Magnetic Maghemite Nanoparticles

Their Preparation, Properties, and Application in Cell Sorting and Characterization of Cellular Membranes in Vitro
  • Avraham Halbreich
  • Jacky Roger
  • Jean-Noël Pons
  • Maria de Fatima Da Silva
  • Eric Hasmonay
  • Michel Roudier
  • Michel Boynard
  • Claude Sestier
  • Asmina Amri
  • Danielle Geldwerth
  • Bernard Fertil
  • Jean Claude Bacri
  • Domagoj Sabolovic’


The chemical synthesis of maghemite (γFe3O4) magnetic nanoparticles and their complexation with dimercaptosuccinìc acid (DMSA), yielding a solution of monocrystalline, monodomain, bare 7.5 nm particles (ferrofluid = FF) is described. The ferrofluid is stable in saline at neutral pH and enables binding of biological effectors to the particle core. Thus, fixing streptavidin on FF provides a reagent capable of magnetic sorting of cells bound to a suitable biotinylated antibody. Results on the use of antibodies and a lectin bound to FF in a magnetic separation of non T lymphocytes and human endothelial cells, respectively, are presented as examples.


Cerebral Malaria Mitochondrial Energy Metabolism Severe Impairment Battery Blood Sedimentation Rate Maghemite Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rosensweig RE (1985). Ferrohydrodynamics. University Press, New York.Google Scholar
  2. 2.
    Kaiser R and Rosensweig RE (1969). Study offerromagnetic fluid. NASA CR, 1407.Google Scholar
  3. 3.
    Khalafalla SE and Reimers GW (1973). Magneto fluids. US Patent 3 764 540.Google Scholar
  4. 4.
    Massart R (1982). Magnetic fluids and process for obtaining them. US Patent 4 329 241.Google Scholar
  5. 5.
    Hasegawa M and Hokkoku S (1978). Magnetic iron oxide - dextran complex and process for its production. US Patent, 4 101 435.Google Scholar
  6. 6.
    Dutton AH, Tokuyasu KT, and Singer J (1979). Iron - dextran antibody conjugates: General method for simultaneous staining of two components in high resolution immunoelectron microscopy. Proc. Natl. Acad. Sci. USA 76, 3392–3396.Google Scholar
  7. 7.
    Griffin T, Mosbach K, and Mosbach R (1981). Magnetic biospecific affinity absorbents for immunoglobulin and enzyme isolation. Appl. Biochem. Biotechnol. 6, 283–292.Google Scholar
  8. 8.
    Molday RS and Mackenzie D (1982). Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. Journal of lmmunol. Methods 52, 353–367.CrossRefGoogle Scholar
  9. 9.
    Schröder U (1983). Magnetic carbohydrate particles as carriers for affinity separation purposes, e.g., cell separation. PCT Int. Appl. WO 83 03, 426.Google Scholar
  10. 10.
    Widder KJ and Senyei AE (1980). Method of magnetic separation of cells and the like, and microspheres for use therein. EU Patent 0 016 552 AI.Google Scholar
  11. 11.
    Kandzia J, Haas W, Leyhausen G, and Müller-Ruchholz W (1984). Cell separation: Comparison between magnetic immune microspheres (MIMS) and FACS. International Meeting on Cell Electrophoresis, Rostock.Google Scholar
  12. 12.
    Renshaw PF, Owen CS, McLaughlin AC and Frey JR (1986). Ferromagnetic contrast agents: A new approach. Magnetic Resonance in Medicine 3, 217–225.Google Scholar
  13. 13.
    Whitehead RA, Chagnon MS, Groman EV and Josephson L (1987). Magnetic particles for use in separations. US Patent 4,695, 392.Google Scholar
  14. 14.
    Masahisa O, Yoshihiro A, Akira Y et al (1990). Immunoassy using magnetic particles. EU Patent 0 420 186 A2.Google Scholar
  15. 15.
    Wang CH and Shah DO (1991). Magnetically responsive fluorescent polymer particles and application thereof. Internat Patent WO 91 /09141.Google Scholar
  16. 16.
    Groman EV and Josephson L (1993). Low molecular weight carbohydrates as additives to stabilize metal oxide compositions. US Patent 5,248, 492.Google Scholar
  17. 17.
    Bee A, Bouchami T, Brossel R et al (1990). Procédé d ‘obtention de supports magnétiques finement divisés par modification contrölée de la surface de particules précurseurs magnétiques chargées et produits obtenus. FR Patent 90 06484.Google Scholar
  18. 18.
    Massart R, Roger J, Cabuil V (1995). New trends in chemistry of magnetic colloids: Polar and non polar magnetic fluids, emulsions, capsules and vesicles. Brazilian Journal of Physics 25, 135–141.Google Scholar
  19. 19.
    Carlsson J, Drevin H and Axen R (1978). Protein thiolation and reversible protein-protein conjugation. Nsuccinimidyl 3-(2-pyridyldithio)propionate, a new heterobi functional reagent. Biochem. J. 173, 723–737.Google Scholar
  20. 20.
    Fauconier N, Bee A, Pons JN and Roger J, in preparation.Google Scholar
  21. 21.
    Bacri JC, Perzynski R, Salin D and Servais J (1987). Magnetic transient birefringence offerrofuids: particle size determination. J. Physique 48, 1385–1391.CrossRefGoogle Scholar
  22. 22.
    Youle, RJ and Neville DM Jr. (1980). Anti-Thy 1.2 monoclonal antibody linked to ricin is a potent celltype-specific toxin. Proc Natl Acad Sci USA 77, 5483–5486.ADSCrossRefGoogle Scholar
  23. 23.
    Raynal P and Pollard HB (1994). Annexins: the problem of assessing the biological role fora gene family of multifunctional calcium-and phospholipid-binding proteins. Biochim. Biophys. Acta 1197, 63–93.Google Scholar
  24. 24.
    Reutelingsperger C (1991). Use of an anticoagulant as a diagnostic agent. International patent WO 91 /09628.Google Scholar
  25. 25.
    Devaux PF (1992). Protein involvement in transmembrane lipid asymmetry. Ann. Rev. Biophys. Biomol. Structure 21, 417–439.CrossRefGoogle Scholar
  26. 26.
    Le DT, Rapaport SI and Rao LVM (1995). Studies on the mechanism for enhanced cell surface factor via tissue factor activation of factor X on fibroblast monolayers after their exposure to N-ethylmaleimide. Thromb. and Haemost. 72, 848–855.Google Scholar
  27. 27.
    Schroit AJ, Madsen JW and Tanaka Y (1985). In vivo recognition and clearance of red blood cells containing phosphatidylserine in their plasma membrane. J. Biol. Chem. 260, 5131–5138.Google Scholar
  28. 28.
    Koopman G, Reutelingsperger CPM, Kuijten GAM et al (1994). Annexin V forflow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84, 1415–1420.Google Scholar
  29. 29.
    McEvoy L, Williamson P and Schlegel RA (1986). Membrane phospholipid asymmetry as a determinant of erythrocyte recognition by macrophages. Proc. Natl. Acad. Sci. USA 83, 3311–3315.Google Scholar
  30. 30.
    Lubin B, Chiu D, Bastacky J et al (1981). Abnormalities in membrane phospholipid organization in sickled erythrocytes. J Clin Invest 67, 1643–1649.CrossRefGoogle Scholar
  31. 31.
    Tait JF and Gibson D (1994). Measurement of membrane phospholipid asymmetry in normal and sickle-cell erythrocytes by means of annexin V binding. J. Lab. Medicine 123, 741–748.Google Scholar
  32. 32.
    Moumaris M, Sestier C, Miltgen F et al (1995). Effect offatty acids treatment in cerebral malaria susceptible and non-susceptible strains of mice. J Parasitol 81, 997–999.CrossRefGoogle Scholar
  33. 33.
    Halbreich A, Sabolovic’ D, Sestier C et al (1995). Nanoparticules magnétiques couplées à de l’annexine et leur utilisation. Demande de brevet n° 9507865 (PCT/FR96/00964), INPI, Paris.Google Scholar
  34. 34.
    Sestier C, Sabolovic’ D, Geldwerth D et al (1995). Use of annexin V ferrofuid to enumerate erythrocytes damaged in various pathologies or during storage in vitro. Comptes Rendus Academies des Sciences Paris 318, 1141–1146.Google Scholar
  35. 35.
    Taverne J, van Schie R, Playfair J et al (1995). Malaria: Phosphatidylserine expression is not increased on the surface of parasitized erythrocytes. Parasitology Today 11, 298–299.Google Scholar
  36. 36.
    Moumaris M, Sestier C, Miltgen F et al (1996). Characterization of a sub-population of mouse red blood cells as a preferential target for malarial invasion. Electrophoresis, in press.Google Scholar
  37. 37.
    Halbreich A, Sabolovic’ D, Sestier, et al (1996). Annexin V binding to mouse erythrocytes following infection with Plasmodium parasites. Parasitology Today 12, 292–293.CrossRefGoogle Scholar
  38. 38.
    Kuypers FA, Lewis RA, Hua M et al (1996). Detection of altered membrane phospho-lipid asymmetry in subpopulations of human red blood cells using fluorescently labeled annexin V. Blood 87, 1179–1187.Google Scholar
  39. 39.
    Wood BL, Gibson DF and Tait JF (1996). Increased erythrocyte phosphatidylserine exposure in sickle cell disease: Flow-cytometric measurement and clinical associations. Blood 88, 1873–1880.Google Scholar
  40. 40.
    Geldwerth D, Devaux PF, Sabolovic’ D et al (1997). Phosphatidylserine exposure at the surface of human erythrocytes during storage: a comparative study of various techniques of detection. In preparation.Google Scholar
  41. 41.
    Kossower NS (1993). Altered properties of erythrocytes in the aged. American J Hematol 42, 241–247.CrossRefGoogle Scholar
  42. 42.
    Fadok VA and Bratton D. FASEB Summer conference on Molecular Biophysics of Cellular Membranes. Saxtons River, Vermont USA, 20–25 July 1996.Google Scholar
  43. 43.
    Hendrix L and Van Brockhoven C (1996). The 13A4 amyloid precursor protein gene in Alzheimer disease. Europ. J. Biochem. 237, 6–15.CrossRefGoogle Scholar
  44. 44.
    Walter H, Widen KE and Read SL (1993). Red blood cells from Alzheimer patients and from normal subjects discerned by electrophoresis in an aqueous polymer solution. Biochem. Biophys. Res. Comm. 194, 23–28.Google Scholar
  45. 45.
    Walter H and Widen KE (1995). Differential electrophoretic behavior in aqueous polymer solutions of red blood cells from Alzheimer patients and from normal individuals. Biochim. Biophys. Acta 1234, 184–190.Google Scholar
  46. 46.
    Bosman GJ, Bartholomeus 1G, De Man AJ et al (1991). Erythrocyte membrane characteristics indicate abnormal cellular aging in patients with Alzheimer’s disease. Neurobiology of Aging 12, 13–18.CrossRefGoogle Scholar
  47. 47.
    Bosman GJ, Viser FE, De Man AJ et al (1993). Erythrocyte membrane changes of individuals with Down’s syndrome in various stages of Alzheimer-type dementia. Neurobiology of Aging 14, 223–228.CrossRefGoogle Scholar
  48. 48.
    Van Rensburg SJ, Daniels WM, Van Zyl J et al (1994). Lipid peroxidation and platelet membrane fluidity–implications for Alzheimer’s disease. Neuroreport 5, 2221–2224.CrossRefGoogle Scholar
  49. 49.
    Zubenko GS, Teply I, Winwood E et al (1996). Prospective study of increased platelet membrane fluidity as a risk factor fbr Alzheimer’s disease: results at 5 years. Amer. J. Psychiatry 153, 420–423.Google Scholar
  50. 50.
    Lejoyeux M, Adès M, Roudier M et al (1993). No change in viscosity of lipid phase of RBC membrane in Alzheimer’s disease. Psychiatry Research 46, 203–206.CrossRefGoogle Scholar
  51. 51.
    Iwaguchi T, Shimizu M, Mori T and Nakajima T (1984). Analysis of electrophoretic mobility histogram of mouse thymocytes during tumor development. Immunology 52, 359–365.Google Scholar
  52. 52.
    Committee on Nomenclature and Statistics (1987). Diagnosis and Statistical Manual of Mental Disorders, revised third edition. American Psychiatric Association, Washington, DC.Google Scholar
  53. 53.
    McKahnn G, Drachman D, Folstein M et al (1984). Clinical diagnosis ofAlzheimer’sy disease: report of the NINCDS-ADRDA work group under the auspices of the Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34, 939–944.CrossRefGoogle Scholar
  54. 54.
    Panisset MF, Roudier M, Saxton J and Boller F (1994). Severe impairment battery. A neuropsychological test for severe demented patients. Arch Neurol 51, 41–45.Google Scholar
  55. 55.
    Boynard M, Ribier F, Guillet R et al (1994). Assessment of red blood cell deformability in healthy adult subjects: influence of sex, age, cigarette smoking, menstrual cycle and oral contraceptives. Clinical Hematology 14, 225–262.Google Scholar
  56. 56.
    Sauer A, Kurzion T, Meyerstein D and Meyerstein N (1991). Kinetics of hemolysis of normal and abnormal red blood cells in glycerol-containing media. Biochim Biophys Acta 1063, 203–208.Google Scholar
  57. 57.
    Hosmer DW and Stanley L (1989). Applied Logistic Regression. Wiley and Sons Inc., New York.Google Scholar
  58. 58.
    Chandrasekaran K, Giordano T, Brady DR et al (1994). Impairment in mitochondrial cytochrome oxidase gene expression in Alzheimer disease. Mol. Brain Res. 24, 336–340.Google Scholar
  59. 59.
    Mutisya EM, Bowling AC and Beal MF (1994). Cortical cytochrome oxidase activity is reduced in Alzheimer’s disease. J Neurochemistry 63, 2179–2184.CrossRefGoogle Scholar
  60. 60.
    Sambrano GR and Steinberg D (1995). Recognition of oxidatively damaged and apoptotic cells by an oxidized low density lipoprotein receptor on mouse peritoneal macrophages: role of membrane phosphatidylserine. Proc. Natl. Acad. Sci. USA 92, 1396–1400.ADSCrossRefGoogle Scholar
  61. 61.
    Sabolovic’ D, Roudier M, Boynard M et al. (1997). Membrane modifications of red blood cells in Alzheimer’s disease. J Gerontology: Biological Sciences, in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Avraham Halbreich
    • 1
  • Jacky Roger
    • 2
  • Jean-Noël Pons
    • 2
  • Maria de Fatima Da Silva
    • 1
    • 3
  • Eric Hasmonay
    • 3
  • Michel Roudier
    • 4
  • Michel Boynard
    • 5
  • Claude Sestier
    • 1
  • Asmina Amri
    • 1
    • 2
  • Danielle Geldwerth
    • 6
  • Bernard Fertil
    • 7
  • Jean Claude Bacri
    • 3
  • Domagoj Sabolovic’
    • 1
  1. 1.INSERM Unit 313CHU Pitié - SalpétrièreParisCedexFrance
  2. 2.Laboratoire de Physico-Chimie InorganiqueUniversité Pierre-et-Marie CurieParis Cedex 05France
  3. 3.Laboratoire d’Acoustique et Optique de la Matière CondenséeUniversité Pierre-et-Marie CurieParis Cedex 05France
  4. 4.Service de Gérontologie CliniqueHôpital Charles RicherVilliers-le-BelFrance
  5. 5.Laboratoire de Biophysique Appliquée (GRPB) UFR Biomédical de Saints-PèresUniversité Paris VParisFrance
  6. 6.Institut de Biologie Physico-ChimiqueParisFrance
  7. 7.INSERM Unité 66CHU Pitié - SalpétrièreParisCedex 13France

Personalised recommendations