Magnetomechanical Stimulation of Mesenchymal Cells

  • Susanne Bierbaum
  • Holger Notbohm


The method presented in this article for the mechanical stimulation of cells via specific receptors was adapted from the method of Wang and Ingber.1,2 Unlike most current methods which apply strain to the cell as a whole, our method is able to determine the specific receptors involved in stress transduction. The stress is applied using ferromagnetic microbeads coated with receptor-specific ligands. After adhesion to cells, the beads are magnetized and then “twisted” using a magnetic field oriented perpendicular to the magnetizing field. This method was applied to osteoblastic cells, and it could be shown that mechanical stress on integrin receptors induces specific tyrosine phosphorylation.


Mesenchymal Cell Focal Adhesion Kinase Osteoblastic Cell Fluid Shear Stress Coated Bead 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang N, Butler JP, Ingber DE (1993). Mechanotransduction across the cell surface and through the cytoskeleton.Science 260, 1124–1127.ADSCrossRefGoogle Scholar
  2. 2.
    Wang N, Ingber DE (1995). Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry.Biochemical Cell Biology 73, 327–335.CrossRefGoogle Scholar
  3. 3.
    Davies PF, Tripathi SC (1993). Mechanical stress mechanisms and the cell.Circulation Research 72, 239–245.CrossRefGoogle Scholar
  4. 4.
    Jones D, Leivseth G, Tenbosch J (1995). Mechano-reception in osteoblast-like cells.Biochemical Cell Biology 73, 525–534.CrossRefGoogle Scholar
  5. 5.
    James NL, Harrison DG, Nerem RM (1995). Effects of shear on endothelial cell calcium in the presence and absence of ATP.FASEB Journal 9, 968–973.Google Scholar
  6. 6.
    Basdra EK, Huber LA, Komposch G, Papavassiliou AG (1994). Mechanical loading triggers specific biochemical responses in mandibular chondrocytes.Biochimica et Biophysica Acta 1222, 315–322.Google Scholar
  7. 7.
    Hamasaki K, Nojima Y et al (1995). Stretching mesangial cells stimulates tyrosine phosphorylation of focal adhesion kinase pp125FAK.Biochemical and Biophysical Research Communications 212, 544–549.CrossRefGoogle Scholar
  8. 8.
    Reich KM, Gay CV, Frangos JA (1990). Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production.Journal of Cellular Physiology 143, 100–104.CrossRefGoogle Scholar
  9. 9.
    Lambert CA, Soudant EP, Nusgens BV, Lapiere CM (1992). Pretranslational regulation of extracellular matrix macromolecules and collagenase expression in fibroblasts by mechanical force.Laboratory Investigation 66, 444–451.Google Scholar
  10. 10.
    Holmvall K, Camper L, Johnasson S, Kimura JH, Lundgren-Akerlund E (1995). Chondrocyte and chondrosarcoma cell ‘ntegrins with affinity for collagen type II and their response to mechanical stress.Experimental Cell Research 221, 496–503.CrossRefGoogle Scholar
  11. 11.
    Buckley MJ, Banes AJ, Jordan RD (1990). The effects of mechanical strain on osteoblasts in vitro.Journal of Maxillofacial Surgery 48, 276–282.CrossRefGoogle Scholar
  12. 12.
    Barbee K (1995). Changes in surface topography in endothelial monolayers with time at confluence: influence on subcellular shear stress distribution due to flow.Biochemical Cell Biology 73, 501–505.ADSCrossRefGoogle Scholar
  13. 13.
    Kimmel DB (1993). A paradigm for skeletal strength homeostasis.Journal of Bone and Mineral Research 8, Suppl. 2, S515 - S522.Google Scholar
  14. 14.
    Ruoslahti E (1991). Integrins.Journal of Cinical Investigation 87, 1–5.CrossRefGoogle Scholar
  15. 15.
    Albelda SM, Buck CA (1990). Integrins and other cell adhesion molecules.FASEB Journal 4, 2868–2880.Google Scholar
  16. 16.
    Hynes RO (1992). Integrins: Versatility, modulation and signaling in cell adhesion.Cell 69, 11–25.CrossRefGoogle Scholar
  17. 17.
    Giancotti FG, Mainiero F (1994). Integrin-mediated adhesion and signaling in tumorgenesis.Biochimica et Biophysica Acta 1198, 47–64.Google Scholar
  18. 18.
    Yamada KM, Miyamoto S (1995). Integrin transmembrane signaling and cytoskeletal control.Current Opinions in Cell Biology 7, 681–689.CrossRefGoogle Scholar
  19. 19.
    Clark EA, Brugge JS (1995). Integrins and signal transduction pathways: the road taken.Science 268, 233–239.ADSCrossRefGoogle Scholar
  20. 20.
    Juliano RL, Haskill S (1993). Signal transduction from the extracellular matrix.Journal of Cell Biology 120, 577–585.CrossRefGoogle Scholar
  21. 21.
    Prasad ARS, Logan SA, Nerem RM, Schwartr CJ, Sprague EA (1993). Flow-related response of intracellular inositol phosphate levels in cultured aortic endothelial cells.Circulation Research 72, 827–836.CrossRefGoogle Scholar
  22. 22.
    Klein-Nulend J, van der Plas A, Semeins CM, Ajubi NE, Frangos JA, Nijweide PJ, Burger EH (1995). Sensitivity of osteocytes to biomechanical stress in vitro.FASEB Journal 9, 441–445.Google Scholar
  23. 23.
    Carvalho RS, Scott JE, Suga DM, Yen EHK (1994). Stimulation of signal transduction pathways in osteoblasts by mechanical strain potentiated by parathyroid hormone.Journal of Bone and Mineral Research 7, 999–1011.Google Scholar
  24. 24.
    Kollros PR, Bates SR, Mathews MB, Horwitz AL, Glagov S (1987). Cyclic AMP inhibits increased collagen production by cyclically stretched smooth muscle cells.Laboratory Investigation 56, 410–417.Google Scholar
  25. 25.
    Schwartz MA, Cragoe EJ, Lechene CP (1990). pH regulation in spread cells and round cells.Journal of Biological Chemistry 265, 1327–1332.Google Scholar
  26. 26.
    Schwartz MA, Lechene C, Ingber DE (1991). Insoluble fibronectin activates the Na/H antiporter by clustering and immobilizing integrin α5β1, independent of cell shape.Proc. Nat. Acad. Sci. USA 88, 7849–7853.ADSCrossRefGoogle Scholar
  27. 27.
    Banes AJ, Tsuzaki M, Yamamoto J, Fischer T, Brigman B, Brown T, Miller L (1995). Mechanoreception at the cellular level: the detection, interpretation, and diversity of responses to mechanical signals.Biochemical Cell Biology 73, 349–365.CrossRefGoogle Scholar
  28. 28.
    Wallace LM, Ham RG (1976). Stimulation of clonal growth of normal fibroblasts with substrata coated with basic polymers.Journal of Cell Biology 71, 727–734.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Susanne Bierbaum
    • 1
  • Holger Notbohm
    • 1
  1. 1.Medical University of LübeckLübeckGermany

Personalised recommendations