Preparation and Application of Monosized Magnetic Particles in Selective Cell Separation

  • Wenche S. Prestvik
  • Arvid Berge
  • Preben C. Mørk
  • Per M. Stenstad
  • John Ugelstad


Some of the basic principles of formation of monosized macroporous particles by the method of “activated swelling” and the preparation of superparamagnetic particles based upon these particles are discussed. A short review of the applications of monodisperse, magnetic polymer particles in cell separation, with emphasis on recent work, is given. Some new work concerning non-specific adhesion of antibodies and cells on different beads, and the prevention of this unwanted phenomenon by help of casein are described. A method for the removal of excess magnetic beads by gradient centrifugation is presented. Positive cell separation, with easy liberation of free cells after magnetic isolation of rosetted cells, is obtained by use of particles with covalently coupled aminophenyl boronic acid at the surface.


Magnetic Bead Polymer Particle Cell Separation Seed Particle Autologous Bone Marrow Transplantation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ugelstad J, Berge A, Ellingsen T et al (1992). Preparation and application of new monosized polymer particles. Prog Polym Sci 17, 87–161.CrossRefGoogle Scholar
  2. 2.
    Ugelstad J, Stenstad P, Kilaas L et al (1993a). Monodisperse magnetic polymer particles. Blood Purif 11, 349–369.CrossRefGoogle Scholar
  3. 3.
    Ugelstad J, Olsvik 0, R et al (1993b). Immunoaffinity separation of cells using monosized magnetic polymer beads. In Molecular Interactions in Bioseparation. Ngo TT (Ed), New York, Plenum Press, 229–244.CrossRefGoogle Scholar
  4. 4.
    Olsvik 0, Popovic T, Skjerve E et al (1994). Magnetic separation techniques in diagnostic microbiology. Clin Microbiol Rev 7, 43–54.Google Scholar
  5. 5.
    Ugelstad J, Prestvik WS, Stenstad P, Kvalheim G (1997). Selective cell separation with monosized magnetizable polymer particles. In Magnetism in Medicine. Andrä W and Nowak H (Eds), John Wiley and Sons, Inc., In press.Google Scholar
  6. 6.
    Ugelstad J, Mork PC, Kaggerud K et al (1980). Swelling of oligomer-polymer particles. New methods of preparation of emulsions and polymer dispersions. Adv Colloid Interface Sci 13, 1201–1243.Google Scholar
  7. 7.
    Ugelstad J, Mork PC, Mfutakamba HR et al (1983). Thermodynamics of swelling of polymer, oligomer and polymer-oligomer particles. Preparation and application of monodisperse polymer particles. In Science and Technology of Polymer Colloids, NATO ASI Series E67. Poehlein GW, Ottewill RH and Goodwin JW (Eds), Boston, Nijhoff, 51–99.CrossRefGoogle Scholar
  8. 8.
    Vanderhof JW, Van den Hul HJ, Tausk RJM and Overbeek JTG (1970). The preparation of monodisperse latexes with well-characterized surfaces. In Clean Surfaces. Goldfinger G (Ed), New York, Marcel Dekker Inc, 15 44.Google Scholar
  9. 9.
    Merup S, DTH, D-2800 Lyngby, Denmark, private report.Google Scholar
  10. 10.
    Fjellväg H and Skjeltorp A, IFE, 2007 Kjeller, Norway, private report.Google Scholar
  11. 11.
    Cullity RD (1972). In Introduction to Magnetic Materials, USA, Addison Wesley Co, chapter 2, 6 and 11.Google Scholar
  12. 12.
    Banerjee SK and Moskowitz BM (1985). Ferrimagnetic properties of magnetite. In Magnetite. Biomineralization and Magnetoreception in Organisms. Kirschvink JL, Jones DS and Mac Fadden BJ (Eds), New York, Plenum Press, chapter 2.Google Scholar
  13. 13.
    Schwertmann U and Cornell RM (1991). In Iron Oxides in Laboratory, Preparation and Characterization, Weinheim, VCH, chapter 12.Google Scholar
  14. 14.
    Bunzli JCG (1979). Comments on the use of HgCO(NCS)4 as susceptibility standard. Inorg Chimica Acta 36, L413 - L414.CrossRefGoogle Scholar
  15. 15.
    Reddy S, Moore LR, Sun L et al (1996). Determination of the magnetic susceptibility of labeled particles by video imaging. Chem Eng Sci 51, 947–956.CrossRefGoogle Scholar
  16. 16.
    Bergstrom K and Holmberg K (1992). Microemulsions as reaction media for immobilization of proteins to hydrophilized surfaces. Colloids and Surfaces 63, 272–280.CrossRefGoogle Scholar
  17. 17.
    Kvalheim G, Jacobsen E and Holte H (1994). Autologous bone marrow transplantation of non-Hodgkin’s lymphoma patients with marrow purged with immunomagnetic beads. In Advances in Bone Marrow Purging and Processing. Gee AP, Gross S and Worthington- White DA (Eds), New York, Wiley-Liss, 133.Google Scholar
  18. 18.
    Kvalheim G, Wang MY, Pharo A et al (1996). Purging of tumor cells from leukapheresis products: Experimental and clinical aspects. J Hematother 5, 427–436.Google Scholar
  19. 19.
    Wang SY, Makl KL, Chen LY et al (1993). Elimination of malignant tumor cells from human bone marrow using monoclonal antibodies and immunomagnetic beads. Anticancer Research 13, 2281–2286.Google Scholar
  20. 20.
    Straka C, Drexler E, Mitterer M et al (1995). Autotransplantation of B-cell purged peripheral blood progenitor cells in B-cell lymphoma. The Lancet 345, 797–798.CrossRefGoogle Scholar
  21. 21.
    Wang MY, Kvalheim G, Kvaley S et al (1992). An effective immunomagnetic method for bone marrow purging in T cell malignancies. Bone Marrow Transpl 9, 319–323.Google Scholar
  22. 22.
    Naume B, Borgen E, Beiske K et al (1997). Detection of isolated breast carcinoma cells in peripheral blood or bone marrow by immunomagnetic techniques. J Hematother, in press.Google Scholar
  23. 23.
    Bruserud 0, Gjertsen BT, Brustugun OT et al (1995). Effect on interleukin 10 on blast cells derived from patients with acute myelogenous leukemia. Leukemia 9, 1910–1020.Google Scholar
  24. 24.
    Jansen J, Hanks S, Akard L et al (1995). Selective T cell depletion with CD8-conjugated magnetic beads in the prevention of graft-versus-host disease after bone marrow transplantation. Leukemia 9, 271–278.Google Scholar
  25. 25.
    Giralt S, Hester J, Hub Y et al (1995). CD8-depleted donor lymphocyte infusion as treatment for relapsed chronic myelogenous leukemia after allogenic bone marrow transplantation. Blood 86, 4337–4343.Google Scholar
  26. 26.
    Brinchman JE, Gaudernack G and Vartdal F (1991). In vitro replication of HIV-1 naturally infected CD4+ T cells is inhibited by rlFNalfa2 and by a soluble factor secreted by activated CD8+ T cells, but not by rlFNbeta, rlFNgamma, or recombinant tumor necrosis factor-alfa. J Aquired Immune Def Syndroms 4, 480–488.Google Scholar
  27. 27.
    Aukrust P, Svardal AM, Müller F (1995). Increased levels of oxidized glutathione in CD4’ lymphocytes associated with disturbed intracellular redox balance in human immunodeficiency virus type I infection. Blood 86, 258–267.Google Scholar
  28. 28.
    Barker TD, Weissman D, Daucher JA et al (1996). Identification of multiple and distinct CD8+ T cell suppresser activities. J Immunol 156, 4476–4483.Google Scholar
  29. 29.
    Mavkewicz CE, Blackboum DJ and Levy JA (1995). CD8’ T cells suppress human immunodeficiency virus replication by inhibiting viral transcription. Proc Natl Acad Sci 92, 2308–2312.CrossRefADSGoogle Scholar
  30. 30.
    Cocchi F, DeVico AL, Garzino-Demo A et al (1995). Identification ofRANTES, MIP-la, and MIP-1 ß as the major HIV-suppressive factors produced by CD8’ T cells. Science 270, 1811–1815.CrossRefADSGoogle Scholar
  31. 31.
    Autran B, Legac E, Blanc C et al (1995). A Tho/Thl-like function of CD4’CD7 T helper cells from normal donors and HIV-infected patients. J Immunol 154, 1408–1417.Google Scholar
  32. 32.
    Naume B, Nonstad U, Steinkjer B et al (1991). Immunomagnetic isolation of NK and LAK cells. J Immun Meth 136, 1–9.CrossRefGoogle Scholar
  33. 33.
    Kieseier BC and Goebel HH (1995). Immunelectronmicroscopic characterization of T4 and T8 lymphocytes and natural killer cells in neuronal ceroid-lipofuscinosis. Am J Med Gen 57, 222–224.CrossRefGoogle Scholar
  34. 34.
    Blom M, Tool ATJ, Mul FPJ et al (1995). Eosinophils isolated with two different methods show different characteristics of activation. J Immunol Meth 178, 183–193.CrossRefGoogle Scholar
  35. 35.
    Chihara J, Kurachi D, Yamamoto T et al (1995). A comparative study of eosinophil isolation by different procedures of CD19-negative depletion. Allergy 50, 11–14.CrossRefGoogle Scholar
  36. 36.
    Miyamasu M, Hirai K, Takahashi Y et al (1995). Chemotactic Agonists Induce cytokine generation in eosinophils. J Immunol 154, 1339–1349.Google Scholar
  37. 37.
    MacGlashan D, White JM, Huang AK et al (1994). Secretion of IL-4 human basophils: The relationship between IL-4 mRNA and protein in resting stimulated basophils. J Immunol 152, 3006–3016.Google Scholar
  38. 38.
    Edward R (1994). A review of biomagnetic separations of immunologically important cells in the human, mouse and rat. Abstract, The British Society of Immunology, Annual Congress, Harrogate.Google Scholar
  39. 39.
    Richters CD, Hoekstra MJ, Van Baare J et al (1994). Isolation and characterization of migratory human skin dendritic cells. Clin Exp Immunol 98, 330–336.CrossRefGoogle Scholar
  40. 40.
    Ruggiero G, Caceres EM, Voordouw A et al (1996). CD40 expressed on thymic epithelial cells provides costimulation for proliferation but not for apoptosis of human thymocytes. J Immunol 156, 3737–3746.Google Scholar
  41. 41.
    Haraldsen G, Rugtveit J, Kvale D et al (1995). Isolation and longterm culture of human intestinal microvascular endothelial cells. Gut 37, 225–234.CrossRefGoogle Scholar
  42. 42.
    Leach L, Bhasin Y, Clark P and Firth JA (1994). Isolation of endothelial cells from human term placental villi using immunomagnetic beads. Placenta 15, 355–364.CrossRefGoogle Scholar
  43. 43.
    Okayama Y, Hunt TC, Kassel O et al (1994). Assessment of the anti-c-kit monoclonal antibody YB5.B8 in affinity magnetic enrichment of human lung mast cells. J Immunol Meth 169, 153–161.CrossRefGoogle Scholar
  44. 44.
    Shapiro F, Yao TJ, Raptis G et al (1994). Optimization of conditions for ex vivo expansion of CD34 ’ cells from patients with stage IV breast cancer. Blood 84, 3567–3574.Google Scholar
  45. 45.
    Rusten LS, Jacobsen SEW, Kaalhus O et al (1994). Functional differences between CD38- and DR- sub-fractions of CD34’ bone marrow cells. Blood 84, 1473–1481.Google Scholar
  46. 46.
    Louache F, Debili N, Marandin A et al (1994). Expression of CD34 by human hematopoietic progenitors. Blood 84, 3344–3355.Google Scholar
  47. 47.
    Zauli G, Furlini G, Vitale M et al (1994). A subset of human CD34 ’ hematopoietic progenitors express low levels of CD4, the high-affinity receptor for human immunodeficiency virus-type 1. Blood 84, 1896–1905.Google Scholar
  48. 48.
    Murray L, Chen B, Galy A et al (1995). Enrichment of human hematopoietic stem cell activity in the CD34 * Thy-1 `Lin–subpopulation from mobillized peripheral blood. Blood 85, 368–378.Google Scholar
  49. 49.
    Strunk D, Rappersberger K, Egger C et al (1996). Generation of human dendritic cells/Langerhans cells from circulating CD34 ’ hematopoietic progenitor cells. Blood 87, 1292–1302.Google Scholar
  50. 50.
    Komatsu F and Moriyama K (1996). Lymphokine-activated killer cellls can discriminate CD34 leukemia cells from normal hematopoietic progenitor cells. J Hematother 5, 49–56.CrossRefGoogle Scholar
  51. 51.
    Freedman AR, Zhu H, Levine JD et al (1996). Generation of human T lymphocytes from bone marrow CD34’ cells in vitro. Nature Medicine 2, 46–51.CrossRefGoogle Scholar
  52. 52.
    Howell KE, Crosby JR, Ladinsky MS et al (1994). Magnetic solid support for cell free analysis of vesicular transport. In Advances in Biomagnetic Separation. Uhlén M, Homes E and Olsvik 0 ( Eds), Natic MA, Eaton Publishing, 195–204.Google Scholar
  53. 53.
    Saucan L and Palade GE (1994). Membrane and secretory proteins are transported from the Golgi complex to the sinusoidal plasmalemma of hepatocytes by distinct vesicular carriers. J Cell Biology 125, 733–741.CrossRefGoogle Scholar
  54. 54.
    Safarik I, Safarikovâ M and Forsythe SJ (1995). The application of magnetic separations in applied microbiology. J Appl Bacteriol 78, 575–585.CrossRefGoogle Scholar
  55. 55.
    Enroth H and Engstrand L (1995). Immunomagnetic separation and PCR for detection of Helicobacter pylori in water and stool specimens. J Clin Microbiol 33 2162–2165.Google Scholar
  56. 56.
    Bennet AR, MacPhee S and Betts RP (1995). Evaluation of methods for the isolation and detection of Escherichia coli 0157 in minced beef. Letters in Appl Microbiol 20, 375–379.CrossRefGoogle Scholar
  57. 57.
    Jinneman KC, Trost PA, Walter EH et al (1995). Comparison of template preparation methods fmm foods for amplification ofEscherichia coli 0157 Shiga-like toxins type I and II DNA multiplex polymerase chain reaction. J Foof Protection 58, 722–726.Google Scholar
  58. 58.
    Cudjoe KS, Hagtvedt T and Dainty R (1995). Immunomagnetic separation of Salmonella from food and their detection using immunomagnetic particle (IMP)-ELISA. Int J Food Microbiol 27, 11–25.CrossRefGoogle Scholar
  59. 59.
    Holt RS, Gast RK and Greene CR (1995). Rapid detection of Salmonella enteritidis in pooled liquid egg samples using a magnetic bead-ELISA system. J Food Protection 58, 967–972.Google Scholar
  60. 60.
    Dziadkowiex D, Mansfield LP and Forsythe SJ (1995). The detection of Salmonella in skimmed milk powder enrichments using conventional methods and immunomagnetic separation. Letters Appl Microbiol 20, 361–364.CrossRefGoogle Scholar
  61. 61.
    Lundeberg J, Larsen F (1995). Solid phase technology: magnetic beads to improve nucleic acid detection and analysis. Biotechnology Annual Review 1, 373–401.CrossRefGoogle Scholar
  62. 62.
    Weersink AJL, Van Kessel KPM, Van den Tol ME et al (1993). Human granulocytes express a 55-kDa lipopolysaccharide-binding protein on the cell surface that is identical to the bactericidal/permeability-increasing protein. J Immunol 150, 253–263.Google Scholar
  63. 63.
    Karlsson GB and Platt FM (1991). Analysis and isolation of human transferrin receptor using the OKT-9 monoclonal antibody covalently crosslinked to magnetic beads. Anal Biochem 199, 219–222.CrossRefGoogle Scholar
  64. 64.
    Worlock AJ, Sidgwick A, Horsburgh T and Bell PRF (1991). The use of paramagnetic beads to the detection of major histocompatibility complex class 1 and class II antigens. Biotechniques 10, 310–315.Google Scholar
  65. 65.
    Nustad K, Paus E and Börmer OP (1991). Magnetizable particles as solid phase in immunoassays. In Magnetic Separation Techniques Applied to Cellular and Molecular Biology. Kemshead JT (Ed), Bristol UK, Wordsminths’ Conf, 39–46.Google Scholar
  66. 66.
    Liabakk NB, Sundan A, Waage A et al (1991). Development of immunoassays for the detection of soluble tumor necrosis factor receptor. J Immunol Meth 141, 237–234.CrossRefGoogle Scholar
  67. 67.
    Leliger C, Kuhlmann E and Kühnl P (1993). A rapid sensitive immunoassay for the antibodies against alloantigenes on human platelet glycoproteins (BIPA). J Immunol Meth 158, 197–200.CrossRefGoogle Scholar
  68. 68.
    Rossomando EF and White L (1994). In situ immunomagnetic capture of proteins from body fluids. In Advances in Biomagnetic Separation. Uhlén M, Homes E and Olsvik 0 ( Eds), Natic MA, Eaton Publishing, 187–193.Google Scholar
  69. 69.
    Civin CI, Strauss LC, Fackler MJ et al (1990). Positive stem cell selection–basic science. In Bone Marrow Purging. Gross S, Gee AP and Worthington-White DA (Eds), New York, Wiley-Liss, 387–402.Google Scholar
  70. 70.
    Ljungquist C, Lundeberg J, Rasmussen AM et al (1993). Immobilization and recovery of fusion proteins and B-lymphocyte cells using magnetic separation. DNA and Cell Biology 12, 191–197.CrossRefGoogle Scholar
  71. 71.
    Rasmussen AM, Smeland EB, Eriksen BK et al (1992). A new method for detachment of Dynabeads from positively selected B lymphocytes. J Immunol Meth 146, 195–202.CrossRefGoogle Scholar
  72. 72.
    Larsen F, Kilaas L and Ugelstad J (1997). Immunomagnetic Separation of cells. In Cell Biology: A Laboratory Handbook. Celes JE (Ed), Acad Press, in press.Google Scholar
  73. 73.
    Kvalheim G, Fodstad 0, Pihl A et al (1987). Elimination of B-lymphoma cells from human bone marrow cells; model experiments using monodisperse magnetic particles with primary monoclonal antibodies. Cancer Res 47, 846–851.Google Scholar
  74. 74.
    Kvalheim G, Funderud S, Kvaley S et al (1988). Successful clinical use of an anti-HLA-DR monoclonal antibody for autologous bone marrow transplantation. J Natl Cancer Inst 80, 1322–1325.CrossRefGoogle Scholar
  75. 75.
    Negrin RS, Kiem HP, Schmidt-Wolf GH et al (1991). Use of the polymerase chain reaction to monitor the effectiveness of ex vivo tumor cell purging. Blood 77, 654–660.Google Scholar
  76. 76.
    Straka C, Kréner, C, Dérken B and Kvalheim G (1992). Polymerase chain reaction monitoring shows a high efficacy of clinical immunomagnetic purging in patients with centmblastic-centrocytic non-Hodgkin’s lymphoma. Blood 80, 2688–2690.Google Scholar
  77. 77.
    Ross AA, Cooper BW, Lazarus HM et al (1993). Detection and viability of tumor cells in peripheral blood stem cell collections from breast cancer patients using immunocytochemical and clonogenic assay techniques. Blood 82, 2605–2610.Google Scholar
  78. 78.
    Brugger W, Bross K, Glatt M et al (1994). Mobilization of tumor cells and hematopoietic progenitor cells into peripheral blood of patients with solid tumors. Blood 83, 636–640.Google Scholar
  79. 79.
    Negrin RS and Pesando J (1994). Detection of tumor cells in purged bone marrow and peripheral-blood mononuclear cells by polymerase chain reaction amplification of bc1–2 translocations. J Clin Oncol 12, 1021–1027.Google Scholar
  80. 80.
    Shpall EJ, Jones RB, Bearman SI et al (1994). Transplantation of enriched CD34-positive autologous marrow into breast cancer patients following high-dose chemotherapy: Influence of CD34-positive peripheral-blood progenitors and growth factors on engraftment. J Clin Oncol 12, 28–36.Google Scholar
  81. 81.
    Elgersma AV, Zsom RLJ, Lyklema J and Norde W (1992). Adsorption competition between albumin and monoclonal immuno-gamma-globulins on polystyrene lattices. J Coll Interf Sci 152, 410–428.CrossRefGoogle Scholar
  82. 82.
    Vogt RF, Phillips DL, Henderson LO et al (1987). Quantitative differences among various proteins as blocking agents for ELISA microtiter plates. J Immunol Meth 101, 43–50.CrossRefGoogle Scholar
  83. 83.
    Prestvik WS (1997). Ph. D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway.Google Scholar
  84. 84.
    Janssen WE and Rios AM (1989). Non-specific cell binding characteristics of para-magnetic polystyrene microspheres used for antibody-mediated cell selection. J Immunol Meth 121, 289–294.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Wenche S. Prestvik
    • 1
  • Arvid Berge
    • 1
  • Preben C. Mørk
    • 1
  • Per M. Stenstad
    • 2
  • John Ugelstad
    • 1
  1. 1.Department of Industrial ChemistryNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.SINTEF, Applied ChemistryTrondheimNorway

Personalised recommendations