Magnetic Separation in Molecular Biology

  • Marie Bosnes
  • Arne Deggerdal
  • Anne Rian
  • Lars Korsnes
  • Frank Larsen
Chapter

Abstract

Monosized superparamagnetic particles, Dynabeads®, have been used in various types of sample preparation including the isolation of cells, organelles, mRNA, genomic DNA and proteins. The magnetic beads can be used directly in crude samples such as whole blood and in 15–30 minute-protocols, the samples are purified by easy magnetic handling. The beads have also reached widespread use for analytical purposes such as solid-phase eDNA synthesis and RT-PCR, subtractive hybridization for the identification of cell-specific expression, cDNA selection for gene hunting, solid-phase sequencing, solid-phase footprinting for the characterization of DNA-binding proteins, and the specific capture of nucleic acid sequences such as viral genomes. In addition, the Dynabeads have proven to be well suited for automation which will be of importance for establishing molecular techniques in high throughput routine use such as medical diagnostics.

Keywords

Polymerase Chain Reaction Magnetic Bead Magnetic Separation Nucleic Acid Research Immunomagnetic Bead 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Uhlén M (1989). Magnetic separation of DNA. Nature 340, 733–734.CrossRefADSGoogle Scholar
  2. 2.
    Lundeberg J, Larsen F (1995). Solid-phase technology: magnetic beads to improve nucleic acid detection and analysis. Biotechnology Annual Review 1, 373–401.CrossRefGoogle Scholar
  3. 3.
    Olsvik Ø, Popovic T, Skjerve E et al (1994). Magnetic Separation Techniques in Diagnostic Microbiology. Clinical Microbiology Reviews 7, 43–54.Google Scholar
  4. 4.
    Homes E, Korsnes L (1990). Magnetic DNA hybridization properties of oligonucleotide probes attached to superparamagnetic beads and their use in the isolation of poly(A) mRNA from eukaryotic cells. Genetical Analytical Technology Applications 7, 145–150.CrossRefGoogle Scholar
  5. 5.
    Merel P, Dupin B, Comeau F, et al (1996). Completely automated extraction of DNA from whole blood. Clinical Chemistry 42, 1285–1286.Google Scholar
  6. 6.
    Larsen F, Holmberg A, Deggerdal A (1996). Automated genomic DNA extraction from whole blood. In Bio-Chip Array Technologies, Nucleic Acid Technologies Series, IBC USA Conferences.Google Scholar
  7. 7.
    Uhlén M, Hultman T, Wahlberg J, Lundeberg J, Bergh S, Pettersson B, Holmberg A, Ståhl S, Moks T (1992). Semi-automated solid-phase DNA sequencing. Trends in Biotechnology 10, 52–55.CrossRefGoogle Scholar
  8. 8.
    Rolfs A and Weber I (1994). Fully-automated nonradioactive solid-phase sequencing of genomic DNA obtained from PCR. BioTechniques 17, 782–787.Google Scholar
  9. 9.
    Holmberg A, Fry G, Uhlén M (1994). Automatic preparation of DNA templates for sequencing on the ABI Catalyst robotic workstation. In Automated DNA sequencing and analysis. Adams MD, Fields C, Venter JC ( Eds ), Academic Press, 139–145.Google Scholar
  10. 10.
    Ugelstad J, Mork PC, Herder Kaggerud K et al (1980). Swelling of oligomer-polymer particles. New methods of preparation of emulsions and polymer dispersions. Advances in Colloid and Interface Science 13, 101–140.CrossRefGoogle Scholar
  11. 11.
    Ugelstad J, Mfutakamba HR, Mork PC, et al (1985). Preparation and application ofmonodispersepolymer particles. Journal of Polymer Science 72, 225–240.Google Scholar
  12. 12.
    Hardingham JE, Kotasek D, Farmer B et al (1993) Immunobead-PCR: A technique for the detection of circulating tumor cells using immunomagnetic beads and the polymerise chain reaction. Cancer Research 53, 3455–58.Google Scholar
  13. 13.
    Hardingham JE, Kotasek D, Sage RE et al (1995) Detection of circulating tumor cells in colorectal cancer by immunobead-PCR is a sensitive prognostic marker for relapse of disease. Molecular Medicine 1, 789–794.Google Scholar
  14. 14.
    Borgnes A, Neurauter A, Fangan BM et al (1996). Detection of isolated colon carcinoma cells in peripheral blood-or bone marrow mono-nuclear cell suspensions. I st International Symposium on Minimal Residual Cancer, Munich, Germany.Google Scholar
  15. 15.
    Danielsen H, Funderud S, Nustad K et al (1986). The Interaction between Cell-Surface Antigens and Antibodies Bound to Monodisperse Particles in Normal and Malignant Cells. Scandinavian Journal of Immunology 24, 179–187.CrossRefGoogle Scholar
  16. 16.
    Kemshead J, Treleaven J, Heath L et al (1987). Monoclonal antibodies and magnetic microspheres for the depletion of leukaemic cells from bone marrow harvested for autologous transplantation. Bone Marrow Transplantation 2, 133–139.Google Scholar
  17. 17.
    Vartdal F, Kvalheim G, Lea T et al (1987). Depletion of T lymphocytes from human bone marrow Use of magnetic monosized polymer microspheres coated with T-lymphocyte-specific monoclonal antibodies. Transplantation 43, 366–371.CrossRefGoogle Scholar
  18. 18.
    Dynal Handbook (1996). Cell Separation and Protein Purification. Dynal, Norway.Google Scholar
  19. 19.
    Vartdal F, Gaudernack G, Funderud S et al (1986). HLA Class I and II typing using cells positively selected from blood by immunomagnetic isolation–a fast and reliable technique. Tissue Antigens 28, 301–312.CrossRefGoogle Scholar
  20. 20.
    George F, Brisson C, Poncelet Pet al (1992). Rapid isolation of human endothelial cells from whole blood using S-Endol monoclonal antibody coupled to immuno-magnetic beads: Demonstration of endothelial injury after angioplasty. Thrombosis and Haemostasis 67, 147–153.Google Scholar
  21. 21.
    Howell KE, Devaney E (1989). Subcellular fractionation of tissue culture cells. Trends in Biochemical Sciences 14, 44–47.CrossRefGoogle Scholar
  22. 22.
    Neurauter A, Edward R, Kilaas L et al (1997). Immunomagnetic Separation of Animal Cells. In Cell Biology: A Laboratory Handbook. Celis JE (Ed). Academic Press.Google Scholar
  23. 23.
    Ausubel C (1987). Current Protocols in Molecular Biology, Vol. 2, chapter 4, Greene Publishing Associates and Wiley-lnterscience. New York.Google Scholar
  24. 24.
    Aviv H, Leder P (1972). Purification of biologically active globin messenger RNA on oligothymidylic acid-cellulose. Proceedings of the National Academy of Science, USA 69, 1408.Google Scholar
  25. 25.
    Jakobsen KS, Breivold E, Homes E (1990). Purification of mRNA directly from crude plant tissues in 15 minutes using oligo dT microspheres. Nucleic Acids Research 18, 3669.CrossRefGoogle Scholar
  26. 26.
    Borgnes A, Lycke K, Opstad A et al (1996). Rapid analysis of gene expression in mouse lymphocyte subsets by combining magnetic cell separation, direct mRNA purification and RT-PCR. Molecular Biology of the Cell 7, Suppl., 622a, 3619.Google Scholar
  27. 27.
    Haire RN, Ohta Y, Lewis JE et al (1994). Txk, a novel human tyrosine kinase expressed in T cells shares sequence identity with Tec family kinases and maps to 4q12. Human Molecular Genetics 3, 897–901.CrossRefGoogle Scholar
  28. 28.
    Jakobsen KS, Haugen M, Søbe-Larsen S et al (1994). Direct mRNA isolation using Magnetic Oligo(dT) Beads: A protocol for all types of cell cultures, animal and plant tissues. In Advances in Biomagnetic Separations. Uhlén M, Hornes E and Olsvik Ø (Eds), 61–71, Eaton PublishingGoogle Scholar
  29. 29.
    Albert J, Wahlberg J, Lundeberg J et al (1992). Persistence ofazidothymidine-resistant human immunodeficiency virus type I RNA genotypes in post-treatment sera. Journal of Virology 66, 5627–5630.Google Scholar
  30. 30.
    Chiodi F, Keys B, Albert Jet al (1992). Human immunodeficiency virus type 1 is present in the cerebrospinalfuid of a majority of infected individuals. Journal of Clinical Microbiology 30, 1768–1771.Google Scholar
  31. 31.
    Scarlatti G, Leitner T, Halapi E et al (1993). Comparison of variable region 3 sequences of human immunodeficiency virus type 1 from infected children with the RNA and DNA sequences of the virus population of their mothers. Proceedings of National Academy of Sciences, USA 90, 1721–1725.CrossRefADSGoogle Scholar
  32. 32.
    Larsen F, Solheim J, Kristensen T et al (1993). A tight cluster of five unrelated human genes on chromosome 16822.1. Human Molecular Genetics 2, 1589–1595.CrossRefGoogle Scholar
  33. 33.
    de Andrés B, del Pozo V, Gallardo S et al (1995). Improved Method for mRNA Extraction from Paraffin-Embedded Tissues. BioTechniques 18, 42–44.Google Scholar
  34. 34.
    Karrer EE, Lincoln JE, Hogenhout S et al (1995). In situ isolation of mRNA from individual plant cells: Creation of cell-specific cDNA libraries. Proceedings of National Academy of Sciences 92, 3814–3818.CrossRefADSGoogle Scholar
  35. 35.
    Tsai S-J, Wiltbank MC (1996). Quantification of mRNA using competitive RT-PCR with standard-curve methodology. BioTechniques 21, 862–866.Google Scholar
  36. 36.
    Stinear T, Matusan A, Hines K et al (1996). Detection of Single Viable Cryptosporidium parvum oocyst in environmental water concentrates by reverse transcription PCR. Appl. Environm. Microbiol. 9, 3385–90.Google Scholar
  37. 37.
    Deggerdal A, Larsen F (1997). Rapid isolation of PCR ready DNA from blood, bone marrow and cultured cells, based on paramagnetic beads. BioTechniques 22, in press.Google Scholar
  38. 38.
    Deggerdal A, Larsen F (1996). Rapid isolation of PCR ready DNA, using paramagnetic beads. FASEB Journal 10, Abstract 732.Google Scholar
  39. 39.
    Rudi K, Kroken M, Dahlberg O et al (1997). Rapid, universal method to isolate PCR ready DNA using magnetic beads. BioTechniques 22 (in press).Google Scholar
  40. 40.
    Hopwood Ai, Mannucci A, Sullivan KM (1996). DNA typing from human faeces. International Journal of Legal Medicine 108, 237–243.CrossRefGoogle Scholar
  41. 41.
    Marianne Dingemanse, personal communication.Google Scholar
  42. 42.
    Van der Zwan A-W, Versluis L, Larsen F, et al (1996). DNA DIRECT TM facilitates molecular HLA typing on limited number of cells. Human Immunology 47, 44, Abstract P224.Google Scholar
  43. 43.
    van Blokland M, Larsen F, de Weger R et al (1996). Chimaerism identification after bone marrow transplantation on limited number of cells using Dynabeads DNA DIRECT TM. Human Immunology 47, 88, Abstract P477.Google Scholar
  44. 44.
    Muir P, Nicholson F, Jhetam M et al (1993). Rapid diagnosis of enterovirus infection by magnetic bead extraction and polymerase chain reaction detection of enterovirus RNA in clinical specimens. Journal of Clinical Microbiology 31, 31–38.Google Scholar
  45. 45.
    Nicholson F, Meetoo G, Aiyar S et al (1994). Detection of enterovirus RNA in clinical samples by nested polymerase chain reaction for rapid diagnosis of enterovirus infection. Journal of Virological Methods 48, 155–166.CrossRefGoogle Scholar
  46. 46.
    Gilgen M, Wegmüller B, Burkhalter P et al (1995). Reverse Transcription PCR to Detect Enteroviruses in Surface Water. Applied and Environmental Microbiology 61, 1226–1231.Google Scholar
  47. 47.
    van Doom L-J, Kleter GEM, Voermans J et al (1994). Rapid detection of hepatitis C virus RNA by direct capture from blood. Journal of Virological Methods 42, 22–28.Google Scholar
  48. 48.
    van Doom L-J, Shyamala V, Han JH et al (1994). HCV RNA detection in heparinized blood by direct genomic RNA capture onto paramagnetic particles. Journal of Virological Methods 48, 339–341.CrossRefGoogle Scholar
  49. 49.
    Yang G, Ulrich PP, Aier RA et al (1993). Detection of Hepatitis B virus in plasma using flow cytometric analyses of polymerase chain reaction amplified DNA incorporating digoxigenein-11-dUTP. Blood 81, 1083–1088.Google Scholar
  50. 50.
    Heermann K-H, Hagos Y, Thomssen R (1994). Liquid-phase hybridization and capture of hepatitis B virus DNA with magnetic beads and fluorescence detection of PCR product. Journal of Virological Methods 50, 43–58.CrossRefGoogle Scholar
  51. 51.
    Millar DS, Withey SJ, Tizard MLV et al (1995). Solid-Phase Hybridization Capture of Low-Abundance Target DNA Sequences: Application of the Polymerise Chain Reaction Detection of Mycobacterium para-tuberculosis and Mycobacterium avium subsp. silvaticum. Analytical Biochemistry 226, 325–330.CrossRefGoogle Scholar
  52. 52.
    Mörl M, Dorner M and Paäbo S (1994). Direct Purification of tRNAs Using Oligonucleotides Coupled to Magnetic Beads. In Advances in biomagnetic separation. Uhlén M, Hornes E, Olsvik Ø, ( Eds ), Eaton Publishing, 107–111.Google Scholar
  53. 53.
    Gabrielsen OS, Huet J (1993). Magnetic DNA affinity purification of yeast transcription factor. Methods in Enzymology 218, 508–525.CrossRefGoogle Scholar
  54. 54.
    Wilson BD, Strauss M, Stickells BJ, van-Helden, EGH, van-Helden PD (1994). An assay for 06-alkylguanine-DNA alkyltransferase based on restriction endonuclease inhibition and magnetic bead separation of products. Carcinogenesis 15, 2143–2148.CrossRefGoogle Scholar
  55. 55.
    Worlock Ai, Sidgwick A, Horsburgh T, Bell PRF (1991). The use of paramagnetic beads for the detection of major histocompatibility complex class I and class II antigens. BioTechniques 10, 310–315.Google Scholar
  56. 56.
    Weersink AJL, van Kessel KPM, van den Tol ME et al (1993). Human granulocytes express a 55-kDa lipopolysaccharide-binding protein on the cell surface that is identical to the bactericidal/permeability-increasing protein. Journal of Immunology 150, 253–263.Google Scholar
  57. 57.
    Karlsson GB and Platt FM (1991). Analysis and isolation of human transferrin receptor using the OKT-9 monoclonal antibody covalently crosslinked to magnetic beads. Analytical Biochemistry 1991, 219–222.CrossRefGoogle Scholar
  58. 58.
    Ugelstad J, Schmid R, Aune O et al (1996). Monodisperse polymer particles (nonmagnetic and magnetic). In Polymeric Materials Encyclopedia. Salamone JC (ed), Boca Raton, CRC Press Inc., 4501–4519.Google Scholar
  59. 59.
    Ugelstad J, Kilaas L, Aune O et al (1994). Monodisperse polymer particles: Preparation and new biochemical and biomedical applications. In Advances in Biomagnetic Separation, Eaton Publ., Natic, MA, USA, 1–20.Google Scholar
  60. 60.
    Ugelstad J, Stenstad P, Kilaas et al (1996). Biochemical and biomedical application of monodisperse polymer particles. Macromolecular Symposium 101, 491–500.CrossRefGoogle Scholar
  61. 61.
    Ji Z, Pinon DI, Miller L (1996). Development of magnetic beads for rapid and efficient metal-chelate affinity purifications. Analytical Biochemistry 240, 197–201.CrossRefGoogle Scholar
  62. 62.
    Hawkins RE, Russell SJ and Winter G (1992). Selection ofphage antibodies by binding affinity, mimicking affinity maturation. Journal of Molecular Biology 226, 889–896.CrossRefGoogle Scholar
  63. 63.
    Russell, SJ, Hawkins RE, Winter G (1993). Retroviral vectors displaying functional antibody fragments. Nucleic Acids Research 21, 1081–1085.CrossRefGoogle Scholar
  64. 64.
    Rodriguez IR, Chader GJ (1992). A novel method for the isolation of tissue-specific genes. Nucleic Acids Research 20, 3528.CrossRefGoogle Scholar
  65. 65.
    Raineri I, Senn HP (1992). HIV-1 promoter insertion revealed by selective detection of chimeric pmvirushost gene transcripts. Nucleic Acids Research 20, 6261–6266.CrossRefGoogle Scholar
  66. 66.
    Raineri I, Moroni C, Senn HP (1991). Improved efficiency of single-sided PCR by creating a reusable pool of first strand cDNA coupled to a solid phase. Nucleic Acids Research 19, 4010.CrossRefGoogle Scholar
  67. 67.
    Lee Y-H, Vacquier VD (1992). Reusable cDNA libraries coupled to magnetic beads. Analytical Biochemistry 206, 206–207CrossRefGoogle Scholar
  68. 68.
    Lambert KN, Williamson VM (1993). cDNA library construction from small amounts of RNA using paramagnetic beads and PCR. Nucleic Acids Research 21, 775–776.Google Scholar
  69. 69.
    Sharma P, Lönneborg A, Stougaard P (1993). PCR-based construction of subtractive cDNA library using magnetic beads. BioTechniques 15, 610–611.Google Scholar
  70. 70.
    Schraml P, Shipman R, Stutz P et al (1993). cDNA subtraction library construction using a magnet-assisted subtraction technique (MAST). Trends in Genetics 9, 70–71.Google Scholar
  71. 71.
    Aasheim H-C, Deggerdal A, Smeland EB et al (1994). A simple subtraction method for the isolation of cell-specific genes using magnetic monodisperse polymer particles. BioTechniques 16, 716–721.Google Scholar
  72. 72.
    Fellmann F, Pretet J-L, Fellmann D (1996). Simplified protocol of solid-phase cDNA libraries for multiple PCR amplification. BioTechniques 21, 766–770.Google Scholar
  73. 73.
    Kwon BS, Kim GS, Ptrystowsky DW et al (1987). Isolation and initial characterization of multiple species of T-lymphocyte subset cDNA clones. Proceedings of the National Academy of Science, USA 84, 2896–2900.CrossRefADSGoogle Scholar
  74. 74.
    Liang PL and Pardee AB (1995). Recent advances in differential display. Current Opinion in Immunology 7, 967–971.CrossRefGoogle Scholar
  75. 75.
    Callard D, Lescure B and Mazzolini L (1994). A method for elimination of false positives generated by the mRNA differential display technique. BioTechniques 16, 1096–1103.Google Scholar
  76. 76.
    Resok Ø, Odeberg, J, Rode M et al (1996). Solid-phase method for differential display of genes expressed in hematopoietic stem cells. BioTechniques 21, 114–121.Google Scholar
  77. 77.
    Yancopoulos GD, Oltz EM, Rathbun G et al (1990). Isolation of coordinately regulated genes that are expressed in discrete stages of B cell development. Proceedings of the National Academy of Science, USA 87, 5759–5763.CrossRefADSGoogle Scholar
  78. 78.
    Zipfel PF, Irving SG, Kelly K et al (1989). Complexity of the primary genetic response to mitogenic activation of human T cells. Molecular Cell. Biol. 9, 1041–1048.Google Scholar
  79. 79.
    Hedrick SM, Cohen DI, Nielsen EA et al (1984). Isolation of cDNA clones encoding T-cell specific membrane associated proteins. Nature 308, 149–153.CrossRefADSGoogle Scholar
  80. 80.
    Swaroop A, Xu J, Agarwal N et al (1991). A simple and efficient cDNA library procedure: isolation of human retina-specific cDNA clones. Nucleic Acids Research 19, 1954.CrossRefGoogle Scholar
  81. 81.
    Aasheim H-C, Logtenberg T, Larsen F (1996). Subtractive Hybridization for the isolation of Differentially Expressed Genes Using Magnetic Beads. In Methods in Molecular Biology, cDNA Library Protocols. Cowell IG and Austin CA (Eds), Humana Press Inc., Totowa, NJ, 115–128.Google Scholar
  82. 82.
    Schoen TJ, Mazuruk K, Chader GJ, Rodriguez IR (1995). Isolation of candidate genes for macular degeneration using an improved solid-phase subtractive cloning technique. Biochemical Biophysical Research Communication 213, 181–188.CrossRefGoogle Scholar
  83. 83.
    Coche T, Dewez M and Beckers MC (1994). Generation of an unlimited supply of a subtracted probe using magnetic beads and PCR. Nucleic Acids Research 22 1322–1323.CrossRefGoogle Scholar
  84. 84.
    Lönneborg A, Sharma P, and Stougaard P (1995). Construction of subtractive cDNA library using magnetic beads and PCR. PCR Methods and Applications 4, 5168–5176.CrossRefGoogle Scholar
  85. 85.
    Frankfort BJ, and Gelman I11(1995). Identification of novel cellular genes transcriptionally suppressed by v-src. Biochemical Biophysical Research Communication 206, 916–926.Google Scholar
  86. 86.
    Kaneko-Ishino T, Kuroiwa Y, Miyoshi N et al (1995). Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization. Nature Genetics 11, 52–59.CrossRefGoogle Scholar
  87. 87.
    Mészaros M and Morton DB (1996). Subtractive hybridization strategy using paramagnetic Oligo(dT) beads and PCR. BioTechniques 20, 413–419.Google Scholar
  88. 88.
    Coche T, and Dewez M (1994). Reducing bias in cDNA sequence representation by molecular selection. Nucleic Acids Research 22, 4545–4546.CrossRefGoogle Scholar
  89. 89.
    Hultman T, Ståhl S, Hornes E et al (1989). Direct solid phase sequencing of genomic and plasmid DNA using magnetic beads as solid support. Nucleic Acids Research 17, 4937–4946CrossRefGoogle Scholar
  90. 90.
    Hultman T, Bergh S, Moks T (1991). Bidirectional solid phase sequencing of in vitro-amplified plasmid DNA. BioTechniques 10, 84–93.Google Scholar
  91. 91.
    Paul CL, Clark SJ (1996). Cytosine methylation: Quantitation by automated genomic sequencing and GENESCAN TM analysis. BioTechniques 21, 126–133.Google Scholar
  92. 92.
    Fangan BM et al, Dynal A.S, Manuscript in prep.Google Scholar
  93. 93.
    Morgan JG, Dolganov GM, Robbins SE et al (1992). The selective isolation of novel cDNAs encoded by the regions surrounding the human interleukin 4 and 5 genes. Nucleic Acids Research 20, 5173–5179.CrossRefGoogle Scholar
  94. 94.
    Tagte DA, Swaroop M, Lovett M et al (1993). Magnetic bead capture of expressed sequences within large genomic segments. Nature 361, 751–753.CrossRefADSGoogle Scholar
  95. 95.
    Forster A, and Rabbitts TH (1993). A method for identifying genes within yeast artificial chromosomes: application to isolation of MLL fision cDNAs from acute leukaemia translocations. Oncogene 8, 3157–3160.Google Scholar
  96. 96.
    Peterson A, Patti N, Robbins C et al (1994). A transcript map of the Down syndrome critical region on chromosome 21. Human Molecular Genetics 3, 1735–1742.CrossRefGoogle Scholar
  97. 97.
    Wevrick R, Kerns JA and Francke U (1994). Identification of a novel paternally expressed gene in the Prader–Willi syndrome region. Human Molecular Genetics 3, 1877–1882.CrossRefGoogle Scholar
  98. 98.
    Del Mastro RG, Wang L, Simmons AD et al (1995). Human chromosome-specific cDNA libraries: New tools for gene identification and genome annotation. Genome Research 5, 185–194.CrossRefGoogle Scholar
  99. 99.
    Korn B, Sedlack Z, Manca A et al (1992). A strategy for the isolation of transcribed sequences in the Xq28 region. Human Molecular Genetics 1, 235–242.CrossRefGoogle Scholar
  100. 100.
    Abe K (1992). Rapid isolation of desired sequences from lone linker PCR amplified cDNA mixtures: Application to identification and recovery of expressed sequences in cloned genomic DNA. Mammalian Genome 2, 252–259CrossRefGoogle Scholar
  101. 101.
    Sedlack Z, Korn B, Konecki DS et al (1993). Construction of a transcription map of a 300 kb region around the human G6PD locus by direct cDNA selection. Human Molecular Genetics 2, 1865–1869.CrossRefGoogle Scholar
  102. 102.
    The Hyp Consortium (1995). A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nature Genetics 11, 130–136.CrossRefGoogle Scholar
  103. 103.
    Simmons AD, Goodart SA, Gallardo TD et al (1995). Five novel genes from cri-du-chat critical region isolated by direct selection. Human Molecular Genetics 4, 295–302.CrossRefGoogle Scholar
  104. 104.
    Yaspo M-L, Gellen L, Mott R et al (1995). Model for a transcript map of human chromosome 21: isolation of new coding sequences from exon and enriched cDNA libraries. Human Molecular Genetics 4, 1291–1304.CrossRefGoogle Scholar
  105. 105.
    Gong W, Emanuel BS, Collins J et al (1996). A transcription map of the DiGeorge and velo-cardio-facial syndrome minimal critical region on 22q11. Human Molecular Genetics 5, 789–800.CrossRefGoogle Scholar
  106. 106.
    Yamakawa K, Mitchell S, Hubert R et al (1995). Isolation and characterization of a candidate gene for progressive myoclonus epilepsy on 21q22.3. Human Molecular Genetics 4, 709–716.CrossRefGoogle Scholar
  107. 107.
    Sedlack Z, Konecki DS, Siebenhaar R et al (1993). Direct selection of DNA sequences conserved between species. Nucleic Acids Research 21, 3419–3425.CrossRefGoogle Scholar
  108. 108.
    Rouqier S, Trask BJ, Taviaux S et al (1995). Direct selection ofcDNAs using whole chromosomes. Nucleic Acids Research 23, 4415–4420.CrossRefGoogle Scholar
  109. 109.
    Sæbøe-Larssen S, Lambersson A (1996). A Novel Drosophila Minute Locus Encodes Ribosomal Protein S13. Genetics 143, 877–885.Google Scholar
  110. 110.
    Galas D and Schmitz A (1978). DNase footprinting: A simple method for detecting protein-DNA binding specificity. Nucleic Acids Research 5, 3157–3170.CrossRefGoogle Scholar
  111. 111.
    Brenowitz M, Senear DF and Kingston RE (1989). DNase I footprint analysis of protein-DNA binding. In Current Protocols in Molecular Biology. Ausubel FM, Brent B, Kingston R et al (Eds), New York, Wiley lnterscience, 12.4.1–12. 4. 16.Google Scholar
  112. 112.
    Sandaltzopoulos R and Becker RB (1994). Solid phase DNase I footprinting: quick and versatile. Nucleic Acids Research 22, 1511–1512.CrossRefGoogle Scholar
  113. 113.
    Sandaltzopoulos R, Quivy J-P and Becker RB (1995). Analysis of Protein-DNA Interactions by Solid-Phase Footprinting. Methods in Molecular and Cellular Biology 5, 176–181.Google Scholar
  114. 114.
    Wright EW, Binder M and Funk W (1991). Cyclic amplification and selection of targets ( CASTing) for the myogenin consensus binding site. Molecular and Cellular Biology 11, 4104–4110.Google Scholar
  115. 115.
    Wright WE, Funk WD (1993). CASTing for multicomponent DNA-binding complexes. Trends in Biochemical Sciences 18, 77–80.CrossRefGoogle Scholar
  116. 116.
    Heald R, Toumebize R, Blank T et al (1996). Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425.CrossRefADSGoogle Scholar
  117. 117.
    Sandaltzopoulos Rafael, personal communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Marie Bosnes
    • 1
  • Arne Deggerdal
    • 1
  • Anne Rian
    • 1
  • Lars Korsnes
    • 1
  • Frank Larsen
    • 1
  1. 1.Dynal Research DepartmentDYNAL A.S.OsloNorway

Personalised recommendations