Physics of Magnetic Cell Sorting

  • Maciej Zborowski


Magnetic cell sorting was made possible by interactions between diverse areas of research, such as physical and polymer chemistry (magnetic microparticles), materials science, physics, and electrical engineering (magnetic separators), biology and medicine (immunoreagents, cell model systems, and applications). Multidisciplinary approaches require a clear understanding of terms. This is an attempt to summarize the important physical terms and relationships used to describe the magnetic forces between the magnetically-labeled cells and the external, magnetostatic field.


Magnetic Susceptibility Magnetic Force Magnetic Dipole Magnetic Field Line Magnetic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ramsey NF (1990). Molecular Beams. The International Series of Monographs on Physics. Oxford University Press, Oxford.Google Scholar
  2. 2.
    Dawson PH (1976). Quadrupole Mass Spectrometry and Its Applications. Elsevier Scientific Publishing Company, New York.Google Scholar
  3. 3.
    Kolm H, Oberteuffer J, Kelland D (1975). High gradient magnetic separation. Sci Amer 233, 47–55.Google Scholar
  4. 4.
    Tenforde TS (1986). Interaction of Extremely Low Frequency magnetic field with living matter. In CRC Handbook of Biological Effects of Electromagnetic Fields, Polk C and Postow E (Eds), CRC Press Inc., Boca Raton, 197–228.Google Scholar
  5. 5.
    Hoffmann GA, Evans GA (1986). Electronic genetic-physical and biological aspects of cellular electromanipulation. IEEE EMB Magazine, December, 6–25.Google Scholar
  6. 6.
    Vassar PS, Hards JM, Seaman GVF (1973). Surface properties of human lymphocytes. Biochim Biophys Acta 291, 107–115.Google Scholar
  7. 7.
    Mason DW, Penhale WJ, Sedgwick JD (1987). Preparation of lymphocyte subpopulations. In Lymphocytes: a Practical Approach. IRL Press, Oxford, 35–55.Google Scholar
  8. 8.
    Oberteuffer JA (1974). Magnetic separation: a review of principles, devices and applications. IEEE Trans Mag MAG-10 223–238.Google Scholar
  9. 9.
    Ashkin A, Dziedzic JM, Yamane T 1(987). Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771.Google Scholar
  10. 10.
    Buican TN, Smyth MJ, Crissman HA, Salzman GC, Stewart CC, Martin JC (1987). Automated single-cell manipulation and sorting by light trapping. Applied Optics 26, 5311–5316.Google Scholar
  11. 11.
    Buican TN, Neagley DL, Morrison WC, Upham BD (1989). Optical trapping, cell manipulation, and robotics. SPIE Symposium on the Medical Applications of Lasers and Optics, Los Angeles.Google Scholar
  12. 12.
    Fulwyler MJ (1965). Electronic separation of biological cells by volume. Science 150 91011.Google Scholar
  13. 13.
    Pinkel D, Stovel R (1985). Flow chambers and sample handling. In Flow Cytometry: Instumentation and Data Analysis, Van Dilla MA, Dean PN, Laerum OD, Melamed MR (Eds), Academic Press, New York.Google Scholar
  14. 14.
    Herzenberg LA, Sweet RG, Herzenberg LA (1976). Fluorescence-activated cell sorting. Sci Amer 234, 108–117.Google Scholar
  15. 15.
    Shapiro HM (1995). Practical Cytometry. Wiley-Liss.Google Scholar
  16. 16.
    Landay AL, Ault KA, Bauer KD, Rabinovitch PS (Eds) (1993). Clinical Flow Cytometry,Ann NY Acad Sci 677.Google Scholar
  17. 17.
    McCormick BH, Amendola RC (1978). Cytospectrometers for subcellular particles and macromolecules: design considerations. In Cheun PW, Fleming DG, Neuman MR, Ko WH (Eds), CRC Press, West Palm Beach, 220–250 (including discussion between Drs. McCormick and Janata).Google Scholar
  18. 18.
    van Oss CJ (1979). Electrokinetic separation methods. Sep Purif Meth 8 119–198.Google Scholar
  19. 19.
    Todd P, Plank LD, Kunze E, Lewis ML, Morrison DR, Barlow GH, Lanham JW, Cleveland C 1(986). Electrophoretic separation and analysis of living cells from solid tissues by several methods. Human embryonic kidney cells as a model. J Chromatography 364, 11–24.Google Scholar
  20. 20.
    Schutt W and Klinkmann H (Eds) (1985). Cell Electrophoresis, Walter de Gruyter, Berlin.Google Scholar
  21. 21.
    Hannig K (1982). New aspects in preparative an analytical continuous free-flow cell electrophoresis. Electrophoresis 3 235–243.Google Scholar
  22. 22.
    Markx GH, Pethig R (1995). Dielectrophoretic separation of cells: continuous separation. Biotech Bioeng 45, 337–343.Google Scholar
  23. 23.
    Markx GH, Talary MS, Pethig R (1994): Separation of viable and non-viable yeast using dielectrophoresis. J Biotech 32, 29–37.Google Scholar
  24. 24.
    Bauer J, Kachel V (1988). Separation accuracy of free flow electrophoresis as proved by flow cytometry. Electrophoresis 9, 62–63.Google Scholar
  25. 25.
    Schutt W, Hashimoto N, Shimizu M (1994). Application of cell electrophoresis for clinical diagnosis. In Cell Electrophoresis. Bauer J (Ed), CRC Press, Boca Raton, 255–266.Google Scholar
  26. 26.
    Vargas FF. Electrical surface phenomena of endothelial cells. Ibid., 241–253.Google Scholar
  27. 27.
    Hannig K, Wirth H, Meyer B-H, Zeiller K (1975). Free flow electrophoresis I. Theoretical and experimental investigations of the influence of mechanical and electrokinetic variables on the efficiency of the method. Hoppe-Seyler’s Z. Physiol. Chem. 356, 1209–1223.Google Scholar
  28. 28.
    Pauling L, Coryell CD (1936). The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc NAS 22, 210–216.CrossRefGoogle Scholar
  29. 29.
    Okazaki M, Maeda N, Shiga T (1986). Drift of an erythrocyte flow line due to the magnetic field. Experientia 42, 842–845.Google Scholar
  30. 30.
    Graham MD (1984). Comparison of volume and surface mechanisms for magnetic filtration of blood cells. J Phys Colloq. 45 (Suppl au no.l), C1:779-C1:784.Google Scholar
  31. 31.
    Bazylinski DA, Frankel RB, Jannasch HW (1988). Aerobic magnetite production by a marine, magnetotactic bacterium. Nature 334, 518–519.Google Scholar
  32. 32.
    Meldrum FC, Mann S, Heywood BR, Frankel R, Bazylinski D (1993). Electron microscopy study of magnetosomes in a cultured magnetotactic bacteria. Proc Royal Soc London Series B 251 (1332), 231–236.CrossRefGoogle Scholar
  33. 33.
    Ugelstad J, Stenstad P, Kilaas L, Prestvik WS, Herje R, Berge A, Homes E (1993). Monodisperse magnetic polymer particles. Blood Purif 11, 347–369.CrossRefGoogle Scholar
  34. 34.
    Radbruch A, Mechtold B, Thiel A, Miltenyi S, Pflüger E (1994). High-gradient magnetic sorting. Methods in Cell Biology 42, 387–403.Google Scholar
  35. 35.
    Liberti PA, Feeley BP (1991). Analytical-and process-scale cell separation with bioreceptor ferrofluids and high gradient magnetic separation. In Cell separation Science and Technology. Compaia DS and Todd P (Eds), ACS Symposium Series, Washington, 464 268–288.Google Scholar
  36. 36.
    Roath S, Thomas TE, Watson JHP, Lansdorp PM, Smith RJS, Richards AJ (1994). Specific capture of targeted hematopoietic cells by high gradient magnetic separation by the use of ordered wire array filters and tetrameric antibody complexes linked to a dextran iron particle. Proceedings of the Fourth International Symposium on Bone Marrow Purging and Processing. Gee AP, Gross S, Worthington-White DA (Eds), Wiley-Liss, New York, 155–163.Google Scholar
  37. 37.
    Roath S (1993). Biological and biomedical aspects of magnetic fluid technology. J Magnetism Magnetic Mat 122 329–334.Google Scholar
  38. 38.
    Russell AP, Evans CH, Westcott VC (1987). Measurement of the susceptibility ofparamgnetically labeled cells with paramagnetic solutions. Analytical Biochemistry 164, 181–189.Google Scholar
  39. 39.
    Zborowski M, Makchesky PS, Jan TF, Hall GS (1992). Quantitative separation of bacteria in saline solution using lanthanide Er(III) and a magnetic field. J Gen Microbiol 142, 135–149.Google Scholar
  40. 40.
    Winoto-Morbach S, Tchikov V, Müller-Ruchholtz (1994). Magnetophoresis: I. Detection of magnetically-labeled cells. J Clin Lab Anal 8, 400–406.CrossRefGoogle Scholar
  41. 41.
    Torbet J (1987). Using magnetic field orientation to study structure and assembly. Trends in Biochemical Science 12 327–330.Google Scholar
  42. 42.
    Torbet J, DiCapua E (1989). Supercoiled DNA is interwound in liquid crystalline solutions. The EMBO Journal 8, 4351–4356.Google Scholar
  43. 43.
    Torbet J (1983). Internal structural anisotropy of spherical viruses studied with magnetic birefringence. The EMBO Journal 2 63–66.Google Scholar
  44. 44.
    Glucksman MJ, Hay RD, Makowski L (1986). X-ray diffraction from magnetically oriented solutions of macromolecular assemblies. Science 231, 1273–1276.Google Scholar
  45. 45.
    Worcester DL (1978). Structural origins of diamagnetic anisotropy in proteins. Proc Natl Acad Sci USA 75 5475–5477.Google Scholar
  46. 46.
    Speyer JB, Sripada PK, Das Gupta SK, Shipley GG, Griffin RG (1987). Magnetic orientation of sphingomyelin-lecithin bilayers. Biophys J 51, 687–691Google Scholar
  47. 47.
    Shin-Etsu Rare Earth Magnets Catalog (1993). Shin-Etsu Chemical Co., Ltd., Tokyo, Japan.Google Scholar
  48. 48.
    Hardwick A, Law P, Mansour V, Kulcinski D, Ishizawa L, Gee A (1992). Development of a large-scale immunomagnetic separation system for harvesting CD34-positive cells from bone marrow. In Advances in Bone Marrow Purging and Processing. Gee A, Gross S, Worthington-White DA (Eds), Wiley-Liss, New York, 583–589.Google Scholar
  49. 49.
    Busch J, Huber P, Pflüger E, Miltenyi S, Holtz J, Radbruch A (1994). Enrichment of fetal cells from maternal blood by high gradient magnetic cell sorting (double MACS) for PCR-based genetic analysis. Prenatal Diagnosis 14, 1129–1140.Google Scholar
  50. 50.
    Thomas TE, Abraham SJR, Otter AJ, Blackmore EW, Lansdorp PM (1992). High gradient magnetic separation of cells on the basis of expression levels of cell surface antigens. J Immunol Meth 154, 245–252.Google Scholar
  51. 51.
    De Palma A (1996). Biomagnetic separations firms move beyond research applications market. Genetic Engineering News, July, 6–7.Google Scholar
  52. 52.
    Becker R (1982). Electromagnetic Fields and Interactions. Dover Publications Inc., New York, 112.Google Scholar
  53. 53.
    Weber E (1960). Electromagnetic Fields. Theory and Applications. Vol. I - Mapping of Fields. John Wiley and Sons, Inc., New York, 345.Google Scholar
  54. 54.
    Landau LD, Lifshitz EM (1984). Electrodynamics of Continuous Media. Pergamon Press, Oxford.Google Scholar
  55. 55.
    Rosensweig RE (1985). Ferro hydrodynamics. Cambridge University Press, Cambridge.Google Scholar
  56. 56.
    Bleaney BI, Bleaney B (1991). Electricity and Magnetism. Oxford University Press, Oxford.Google Scholar
  57. 57:.
    Batchelor GK (1992). An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge.Google Scholar
  58. 58.
    Zborowski M, Moore LR, Sun L, Chalmers JJ (1997). Continuous flow magnetic cell sorting using soluble immunomagnetic label. This volume pp. 247–260.Google Scholar
  59. 59.
    Anderson HL, Cohen ER (1989). The International System of Units (SI) [from The International System of Units, Natl. Bur. of Stan. (S) Spec. Pub. 330 (1986 Edition)]. A Physicist’s Desk Reference, Anderson HL (Ed), American Institue of Physics, New York, Sec.1.02.A-1.02.B.Google Scholar
  60. 60.
    Op.cit. 52, 431.Google Scholar
  61. 61.
    Op. cit. 55, 30–32.Google Scholar
  62. 62.
    Maxwell JC ( 1954, reprinted from 1891 publication). A Treatise on Electricity and Magnetism. Dover Publications, Inc., New York.Google Scholar
  63. 63.
    Op. cit. 56, 184–188.Google Scholar
  64. 64.
    Purcell EM (1985). Electricity and Magnetism. Berkeley Physics Course–Volume 2, McGraw-Hill Book Company, New York, 397–442.Google Scholar
  65. 65.
    Bozorth RM (1968). Ferromagnetism. D. Van Nostrand Co., Inc., Princeton.Google Scholar
  66. 66.
    Chikazumi S (1986). Physic of Magnetism. Robert E. Krieger Publishing Co., Malabar.Google Scholar
  67. 67.
    Kellogg OD (1953). Foundations of Potential Theory. Dover Publications, Inc., New York.Google Scholar
  68. 68.
    Brandt EH 1(989). Levitation in physics. Science 243 349–355.Google Scholar
  69. 69.
    Nehari Z (1975). Conformal Mapping. Dover Publications, Inc., New York.Google Scholar
  70. 70.
    Ivanov VI and Trubetskov MK (1995). Handbook of Conformal Mapping with Computer-Aided Visualization. CRC Press, Boca Raton.zbMATHGoogle Scholar
  71. 71.
    Stratton JA (1941). Electromagnetic Theory. McGraw-Hill Book Company, New York, 99.zbMATHGoogle Scholar
  72. 72.
    CRC Handbook of Chemistry and Physics (1986). Weast RC (Ed), CRC Press, Boca Raton, E119 - E135.Google Scholar
  73. 73.
    Frantz SG (1936). Magnetic separation method and means. US Patent 2,056,426, Oct. 6.Google Scholar
  74. 74.
    Zebel G (1965). Deposition of aerosol flowing past a cylindrical fiber in a uniform electric field. J Colloid Sci 20 522–543.Google Scholar
  75. 75.
    Watson JHP (1973). Magnetic filtration. J App Phys 44 4209–4213.Google Scholar
  76. 76.
    Watson JHP (1990). High gradient magnetic separation. In Solid-liquid Separation. Svarovsky L (Ed), Butterworths, London, 661–684.CrossRefGoogle Scholar
  77. 77.
    Russel WB, Saville DA, Schowalter WR (1989). Colloidal Dispersions. Cambridge University Press, Cambridge, 14.CrossRefGoogle Scholar
  78. 78.
    Bird RB, Stewart WE, Lightfoot EN (1960). Transport Phenomena. John Wiley and Sons, New York.Google Scholar
  79. 79.
    Lawson WF (1977). The dynamics of a particle attracted by a magnetized wire. J Appl Phys 48 3213–3224.Google Scholar
  80. 80.
    Treat RP, Lawson WF (1979). Observation of particle trajectories near a magnetized fiber. J Appl Phys 50, 3596–3602.Google Scholar
  81. 81.
    Friedlaender FJ, Takayasu M, Rettig JB, Kentzer CP (1978). Particle flow and collection process in single wire HGMS studies. IEEE Trans Mags MAG-14 1158–1164.ADSCrossRefGoogle Scholar
  82. 82.
    Hwang JY, Takayasu M, Friedlaender FJ, Kullerud (1984). Application of magnetic susceptibility gradients to magnetic separation. J Appl Phys 55, 2592–2594.Google Scholar
  83. 83.
    Reddy S, Moore LR, Sun L, Zborowski M, Chalmers JJ (1996). Determination of the magnetic susceptibility of labeled particles by video imaging. Chemical Engineering Science 51, 947–956.Google Scholar
  84. 84.
    Zborowski M, Fuh CB, Green R, Baldwin NI, Reddy S, Douglas T, Mann S, Chalmers JJ (1996). Immunomagnetic isolation of magnetoferritin-labeled cells in a modified ferrograph. Cytometry 24, 251–259CrossRefGoogle Scholar
  85. 85.
    Doctor RD, Panchal CB, Swietlik CE (1986). A model of open-gradient magnetic separation for coal cleaning using a superconducting quadrupole field. AIChE Symposium Series “Recent Advances in Separation Techniques–III” 82, 154–168.Google Scholar
  86. 86.
    Zborowski M, Williams PS, Sun L, Moore LR Chalmers JJ (1997). Cylindrical SPLITT and quadrupole magnetic field in application to continuous flow magnetic cell sorting. J Liquid Chromat Related Tech (submitted).Google Scholar
  87. 87.
    Hartig R, Hausman M, Schmitt J, Herrmann DBJ, Riedmeiller M, Cremer C (1992). Preparative continuous separation of biological particles by means offree-flow magnetophoresis in a free-low electrophoresis chamber. Electrophoresis 13, 674–676.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Maciej Zborowski
    • 1
  1. 1.Department of Biomedical Engineering/Wb-3The Cleveland Clinic FoundationClevelandUSA

Personalised recommendations