Ferrite Magnetostrictive Radiators

  • I. P. Golyamina
Part of the Ultrasonic Technology book series (ULTE, volume 1)

Abstract

Magnetostrictive electroacoustic transducers are widely used in ultrasonic engineering [1, 2]. They have acquired a special reputation as radiators in equipment for the active technological application of ultrasound in the frequency range from 15 to 60 kc. The materials used for these transducers are usually metals and alloys having magnetostrictive properties: nickel, iron—cobalt alloys (of which Permendur is the best-known representative), iron—nickel alloys, iron—aluminum alloys (known as Alfer and Alfenol). The quest for new transducer materials has led to the development of ceramics with magnetostrictive properties, namely, special types of ferrites. Similar to piezoelectric ceramics of the barium titanate or lead zirconate—titanate type in their mechanical characteristics and production technology, magnetostrictive ferrites are also efficient, inexpensive, relatively simple to produce, and do not require hard-to-get raw materials. All of these factors take on tremendous importance in connection with the mass utilization of ultrasonic methods in the national economy.

Keywords

Resonance Frequency Vibration Amplitude Coupling Coefficient Stress Amplitude Nickel Ferrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    I. Mataushek, Ultrasonic Engineering, Moscow (1962).Google Scholar
  2. 2.
    J. R. Frederick, Ultrasonic Engineering, Wiley, New York-London-Sydney (1965).Google Scholar
  3. 3.
    J. L. Snoek, New Developments in Ferromagnetic Materials, New York-Amsterdam (1947).Google Scholar
  4. 4.
    J. Smit and H. P. J. Wijn, Ferrites, Wiley, New York (1959).Google Scholar
  5. 5.
    K. Sixtus, Frequenz, 5: 335 (1951).CrossRefGoogle Scholar
  6. 6.
    C. W. Diethelm, Tech. Mitt. PTT, 29: 281 (1951).Google Scholar
  7. 7.
    C. M. van der Burgt, Philips Res. Rep., 8; 91 (1953).Google Scholar
  8. 8.
    W. B. Roberts, RCA Rev., 14 (3): 3 (1953).Google Scholar
  9. 9.
    W. B. Roberts, QST, No. 6, p. 24; No. 7, p. 28; No. 8, p. 32 (1953).Google Scholar
  10. 10.
    H. Lennartz, Funktechnik, 9: 468 (1954).Google Scholar
  11. 11.
    K. P. Belov, Elastic, Thermal, and Electrical Phenomena in Ferromagnets, Moscow (1957).Google Scholar
  12. 12.
    G. W. Pierce, Proc. Am. Acad. Boston, 63: 1 (1928).Google Scholar
  13. 13.
    F. D. Smith, Proc. Phys. Soc., 42: 181 (1930).Google Scholar
  14. 14.
    S. Butterworth and F. D. Smith, Proc. Phys. Soc., 43: 166 (1931).CrossRefGoogle Scholar
  15. 15.
    H. Thiede, Acustica, 4 (5): 532 (1954).Google Scholar
  16. 16.
    G. Bradfield, Research, 6 (2): 2 (1953).Google Scholar
  17. 17.
    P. Popper, in; Soft Magnetic Materials for Telecommunication, London (1953).Google Scholar
  18. 18.
    G. Bradfield, Acustica, 4 (1); 171 (1954).Google Scholar
  19. 19.
    U. Enz, Tech. Mitt. PTT, 6: 209 (1955).Google Scholar
  20. 20.
    C. M. van der Burgt, J. Acoust. Soc. Am., 28 (6): 1020 (1956).Google Scholar
  21. 21.
    C. M. van der Burgt, Philips Res. Rep., 12 (2): 97 (1957).Google Scholar
  22. 22.
    C. M. van der Burgt, Valvo Berichte, 5 (1): 1 (1959).Google Scholar
  23. 23.
    C. M. van der Burgt, Electronic Technology, 37: 330 (1960).Google Scholar
  24. 24.
    C. M. van der Burgt and A. L. Stuijts, Ultrasonics, 1: 199 (1963).CrossRefGoogle Scholar
  25. 25.
    Y. Kikuchi et al., Sci. Rep. Res. Inst. Tohoku Univ., Series B, 7(1): 1; 9(3): 171 (1955).Google Scholar
  26. 26.
    Y. Kikuchi, J. Acoust. Soc. Am., 29 (5): 569 (1957).Google Scholar
  27. 27.
    Y. Kikuchi, Proceedings of the Conference on Electronic Communication Devices, Tokyo University, 21 (1): 49–56 (1958) [in Japanese].MathSciNetGoogle Scholar
  28. 28.
    H. D. Root and J. McDonald, J. Am. Ceram. Soc., 40 (1): 1–5 (1957).CrossRefGoogle Scholar
  29. 29.
    S. F. Ferbee and C. M. Davis, J. Acoust. Soc. Am., 30 (8): 747 (1958).CrossRefGoogle Scholar
  30. 30.
    Z. Kachkovskii, Akust. Zh., 9 (1): 37 (1963).Google Scholar
  31. 31.
    B. Wadas, Bull. Polish Acad. Sci., 11 (2): 95 (1963).Google Scholar
  32. 32.
    Z. Kaczkowski, Bull. Polish Acad. Sci., 11 (1): 41 (1963).Google Scholar
  33. 33.
    Applications of Ferrites as Sound Radiators, Report of the Institute of Acoustics (1955).Google Scholar
  34. 34.
    I. P. Golyamina, Akust. Zh„ 2 (2): 225 (1956).Google Scholar
  35. 35.
    I, P. Golyamina, Akust. Zh., 6 (3): 311 (1960).Google Scholar
  36. 36.
    L. N. Syrkin, in: Ferrites, Minsk (1960), p. 226.Google Scholar
  37. 37.
    L. N. Syrkin, Fiz. Tverd, Tela, 2 (8): 1900 (1960).Google Scholar
  38. 38.
    P. L. Strelets, L. N. Syrkin, and M. G. Tkachenko, Izv. Akad. Nauk SSSR, Sei, Fiz., 25 (11): 1426 (1961).Google Scholar
  39. 39.
    Ya, S. Shur, M. G. Luzhinskaya, I. B. Vlasov, O. I. Shiryaeva, and V. A. Zaikova, Izv, Akad. Nauk SSSR, Ser, Fiz., 22 (10): 1259 (1958).Google Scholar
  40. 40.
    A. D. Sokolov and Ya. S. Shur, Akust. Zh., 6(1):131(1960).Google Scholar
  41. 41.
    R. Bozorth, Ferromagnetism, Van Nostrand, New York (1951).Google Scholar
  42. 42.
    H. Jaffe and D. A. Berlincourt, Proc. IEEE, 53 (10): 1327 (1965).CrossRefGoogle Scholar
  43. 43.
    E. W. Gorter, Proc. IRE, 12: 1945 (1955).CrossRefGoogle Scholar
  44. 44.
    L. I. Rabkin, S. A. Soskin, and B. Sh, Épshtein, Technology of Ferrites, MoscowLeningrad (1962).Google Scholar
  45. 45.
    N. A. Toropov, L. I. Rabkin, 14. I. Freidenfel’d, and B. Sh. Épshtein, Zh, Tekh, Fiz., 23 (9): 1541 (1953).Google Scholar
  46. 46.
    I. P. Golyamina and N. F. Starostina, Series: “Advanced Scientific, Technical, and Industrial Experimentation,” No. M-60 118/ 1, Moscow (1960).Google Scholar
  47. 47.
    L. Ya. Gutin, Zh. Tekh, Fiz., 15 (4–5): 239 (1945).Google Scholar
  48. 48.
    L. Ya. Gutin, Zh. Tekh, Fiz., 15 (12): 924 (1945).Google Scholar
  49. 49.
    I. P. Golyamina, Ul’trazvukovaya Tekhnika, No. 1, p. 31 (1960).Google Scholar
  50. 50.
    I. P. Golyamina and V. K. Chulkova, Akust. Zh., 12(4): 428 (1966)Google Scholar
  51. 51.
    R. Ochsenfeld, Z. Phys., 143: 375 (1955).CrossRefGoogle Scholar
  52. 52.
    I. B. Kekalo and B. G. Livshits, Fiz. Met. Metallov., 13 (4): 599 (1962).Google Scholar
  53. 53.
    L. I. Ganeva and I. P. Golyamina, Akust, Zh., 9 (4): 413 (1963).Google Scholar
  54. 54.
    Investigation of Ferrite Magnetostrictive Vibratory Systems and, Based on Them, the Development of a Small-Scale Ultrasonic Machine Tool with a Simplified Construction and Power Rating up to 100 W. Report of the Experimental Scientific Research Institute of Metal-Cutting Machines (ÉNIMS) and the Institute of Acoustics (1965).Google Scholar
  55. 55.
    O. Hoover, J. Acoust. Soc. Am., 28 (2): 291 (1956).Google Scholar
  56. 56.
    R. R. Whymark, J. Acoust. Soc. Am., 33 (6): 725 (1961).Google Scholar
  57. 57.
    I. P. Golyamina, Proc. Third ICA Congress, Amsterdam (1960), p. 1211.Google Scholar
  58. 58.
    C. M. van der Burgt and A. L. Stuijts, Proc. Fourth ICA Congress, Copenhagen (1962), p, K22Google Scholar
  59. 59.
    I. P. Golyamina and V. K. Chukova, Akust, Zh., 10 (3): 276 (1964).Google Scholar
  60. 60.
    R. Gerson, J. Acoust, Soc. Am., 32 (10): 1297 (1960).Google Scholar
  61. 61.
    L. I. Ganeva and I. P. Golyamina, GOSINTI, Series: “Advanced Scientific, Technical, and Industrial Experimentation,” No. 18–63–186/ 1, Moscow (1963).Google Scholar
  62. 62.
    H. Thiede, Akust. Beih., 3: 449 (1953).Google Scholar
  63. 63.
    O. Henkel, Hochfrequenztech. Electroakust., 70 (5): 177 (1961).Google Scholar
  64. 64.
    Comparison of Magnetostrictive Transducers Made from Ceramic and Metallic Materials. Report of the Institute of Acoustics (1965).Google Scholar
  65. 65.
    L. D. Rozenberg and M. G. Sirotyuk, Akust. Zh., 6 (4): 478 (1961).Google Scholar
  66. 66.
    E. A. Neppiras, Akust. Zh., 8 (1): 7 (1962).Google Scholar
  67. 67.
    L. I. Ganeva and I. P. Golyamina, Ul’trazvukovaya Tekhnika, No. 1, p. 32 (1964).Google Scholar
  68. 68.
    L. I. Ganeva and I. P. Golyamina, Ul’trazvukovaya Tekhnika, No. 2, p. 13 (1964).Google Scholar
  69. 69.
    L. I. Ganeva, I. P. Golyamina, A. P. Matyushin, and I. A. Ostratenko, Ul’trazvukovaya Tekhnika, No. 3, p. 16 (1965).Google Scholar
  70. 70.
    L. N. Matsyuk, A. V. Bogdashevskii, L. L. Zharkova, Yu. M. Kolobkov, and O. A. Kotovshchikova, Welding of Polymer Films, Moscow (1965).Google Scholar
  71. 71.
    H. P. C. Daniels, Ultrasonics, 3: 190 (1965).CrossRefGoogle Scholar
  72. 72.
    A. V. Bogashevskii, L. I. Ganeva, and I. P. Golyamina, Ul’trazvukovaya Tekhnika, No. 1, p. 39 (1966).Google Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • I. P. Golyamina

There are no affiliations available

Personalised recommendations