Autoregulation of Protein Synthesis by Translation

  • Guim Kwon
  • Guang Xu
  • Wilhelm S. Cruz
  • Connie A. Marshall
  • Michael L. McDaniel
Part of the Endocrine Updates book series (ENDO, volume 16)


In mammalian cells mRNA translation is activated by a variety of stimuli including hormones such as insulin and growth factors. The stimulatory effects of nutrients, in particular, glucose and amino acids, on protein synthesis have recently become a focus of new interest. Acute exposure of pancreatic β-cells to glucose, for example, is known to activate insulin biosynthesis by stimulating translation of pre-existing prepro-insulin mRNA. This regulation at the level of translation rather than at the level of insulin gene transcription ensures a rapid replenishment of stored insulin content after exocytosis. Dietary amino acids have also been shown to stimulate muscle protein synthesis after food intake (1, 2). This anabolic effect may be attributed in part to an increase in amino acid supply to muscle, thereby augmenting substrate availability for peptide synthesis. However, many recent studies suggest that amino acids also function independently as nutritional signaling molecules that regulate mRNA translation. In this chapter, the effects of nutrients, glucose and amino acids, on the regulation of protein synthesis by activating key regulatory translation factors will be discussed primarily focusing on pancreatic β-cells.


Basal Amino Acid Insulin Receptor Substrate RINm5F Cell Insulin Gene Expression Stimulate Muscle Protein Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gautsch, T. A., Anthony, J. C., Kimball, S. R., Paul, G. L., Layman, D. K., and Jefferson, L. S. 1998 Eukaryotic initiation factor 4E availability regulates skeletal muscle protein synthesis during recovery from exercise. Am. J. Physiol. 274, C406 - C414PubMedGoogle Scholar
  2. 2.
    Yoshizawa, F., Kimball, S. R., Vary, T. C., and Jefferson, L. S. 1998 Effect of dietary protein on translation initiation in rat skeletal muscle and liver. Am. J. Physiol. 275, E814 - E820PubMedGoogle Scholar
  3. 3.
    Thorens, B., and Waeber, G. 1993 Glucagon-like peptide-I and the control of insulin secretion in the normal state and in NIDDM. Diabetes 42, 1219–1225PubMedCrossRefGoogle Scholar
  4. 4.
    Lenzen, S., and Tiedge, M. 1994 Regulation of pancreatic beta-cell glucokinase and GLUT2 glucose transporter gene expression. Biochem. Soc. Trans. 22, 1–6PubMedGoogle Scholar
  5. 5.
    Dunne, M. J., Harding, E. A., Jaggar, J. H., and Squires, P. E. 1994 Ion channels and the molecular control of insulin secretion. Biochem. Soc. Trans. 22, 6–12PubMedGoogle Scholar
  6. 6.
    Flatt, P. R., Barnett, C. R., and Swanston-Flatt, S. K. 1993 Mechanisms of pancreatic b-cell dysfunction and glucose toxicity in non-insulin-dependent diabetes. Biochem. Soc. Trans. 22, 18–23Google Scholar
  7. 7.
    Goodison, S., Kenna, S., and Ashcroft, S. J. 1992 Control of insulin gene expression by glucose. Biochemical J. 285, 563–568Google Scholar
  8. 8.
    Nielsen, D. A., Welsh, M., Casadaban, M. J., and Steiner, D. F. 1985 Control of insulin gene expression in pancreatic beta-cells and in an insulin-producing cell line, RIN-5F cells. I. Effects of glucose and cyclic AMP on the transcription of insulin mRNA. J. Biol. Chem. 260, 13585–13589Google Scholar
  9. 9.
    Permutt, M. A., and Kipnis, D. M. 1972 Insulin biosynthesis. II. Effect of glucose on ribonucleic acid synthesis in isolated rat islets. J. Biol. Chem. 247, 1194–1199PubMedGoogle Scholar
  10. 9.
    Permutt, M. A. 1974 Effect of glucose on initiation and elongation rates in isolated rat pancreatic islets. J. Biol. Chem. 249, 2738–2742PubMedGoogle Scholar
  11. 11.
    Skelly, R. H., Schuppin, G. T., Ishihara, H., Oka, Y., and Rhodes, C. J. 1996 Glucose-regulated translational control of proinsulin biosynthesis with that of the proinsulin endopeptidases PC2 and PC3 in the insulin-producing MIN6 cell line. Diabetes 45, 37–43PubMedCrossRefGoogle Scholar
  12. 12.
    Guest, P. C., Bailyes, E. M., Rutherford, N. G., and Hutton, J. C. 1991 Insulin secretory granule biogenesis. Co-ordinate regulation of the biosynthesis of the majority of constituent proteins. Biochem. J. 274, 73–78PubMedGoogle Scholar
  13. 13.
    Grimaldi, K. A., Siddle, K., and Hutton, J. C. 1987 Biosynthesis of insulin secretory granule membrane proteins. Control by glucose. Biochem. J. 245, 567–573PubMedGoogle Scholar
  14. 14.
    Guest, P. C., Rhodes, C. J., and Hutton, J. C. 1989 Regulation of the biosynthesis of insulin-secretory-granule proteins. Co-ordinate translational control is exerted on some, but not all, granule matrix constituents. Biochem. J. 257, 431–437PubMedGoogle Scholar
  15. 15.
    Pause, A., Belsham, G. J., Gingras, A.-C., Donze, O., Lin, T.-A., Lawrence, J. C., Jr., and Sonenberg, N. 1994 Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5’-cap function. Nature 371, 762–767PubMedCrossRefGoogle Scholar
  16. 16.
    Lin, T.-A., Kong, X., Haystead, T. A. J., Pause, A., Belsham, G., Sonenberg, N., and Lawrence, J. C., Jr., 1994 PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science 266, 653–656PubMedCrossRefGoogle Scholar
  17. 17.
    Grammer, T. C., Cheathem, L., Chou, M. M., and Blenis, J. 1996 The p70 signaling pathway: a novel signaling system involved in growth regulation. Cancer Sury 27, 271–291Google Scholar
  18. 18.
    Pullen, N., and Thomas, G. (1997) The modular phosphorylation and activation of p70s6k FEBS Lett 410, 78–82PubMedCrossRefGoogle Scholar
  19. 19.
    Shah, O. J., Anthony, J. C., Kimball, S. R., and Jefferson, L. S. 2000 4E-BP1 and S6K1: translational integration sites for nutritional and hormonal information in muscle. Am. J. Physiol. Endocrinol. Metab. 279, 715–729Google Scholar
  20. 20.
    Peterson, R. T., and Schreiber, S. L. 1998 Translation control: Connecting mitogens and the ribosome. Curr. Biol. 8, 248–250CrossRefGoogle Scholar
  21. 21.
    Stewart, M. J., and Thomas, G. 1994 Mitogenesis and protein synthesis: A role for ribosomal protein S6 phosphorylation? BioEssays 16, 1–7CrossRefGoogle Scholar
  22. 22.
    Jefferies, H. B. J., Fumagalli, S., Dennis, P. B., Reinhard, C., Pearson, R. B., and Thomas, G. 1997 Rapamycin suppresses 5’TOP mRNA translation through inhibition of p70s6k. EMBO J. 12, 3693–3704CrossRefGoogle Scholar
  23. 23.
    Dufner, A., and Thomas, G. 1999 Ribosomal S6 kinase signaling and the control of translation. Exp. Cell Res. 253, 100–109PubMedCrossRefGoogle Scholar
  24. 24.
    Haystead, T. A., Haystead, C. M., Hu, C., Lin, T.-A., and Lawrence, J. C., Jr., 1994 Phosphorylation of PHAS-I by mitogen-activated protein (MAP) kinase. Identification of a site phosphorylated by MAP kinase in vitro and in response to insulin in rat adipocytes. J. Biol. Chem. 269, 23185–23191PubMedGoogle Scholar
  25. 25.
    Brunn, G. J., Williams, J., Sabers, C., Wiederrecht, G., Lawrence, J. C., Jr., and Abraham, R. T. 1996 Direct inhibition of the signaling functions of the mammalian target-of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J. 15, 5256–5267PubMedGoogle Scholar
  26. 26.
    Beretta, L., Gingras, A.-C., Svitkin, Y. V., Hall, M. N., and Sonenberg, N. 1996 Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J. 15, 658–664PubMedGoogle Scholar
  27. 27.
    Brunn, G. J., Hudson, C. C., Sekulic, A., Williams, J. M., Hosoi, H., Houghton, P. J., Lawrence, J. C., Jr., and Abraham, R. T. 1997 Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277, 99–101PubMedCrossRefGoogle Scholar
  28. 28.
    Hara, K., Yonezawa, K., Kozlowski, M. T., Sugimoto, T., Andrabi, K., Weng, Q.-P., Kasuga, M., Nishimoto, I., and Avruch, J. 1997 Regulation of eIF-4E BP1 phosphorylation by mTOR. J. Biol. Chem. 272, 26457–26463PubMedCrossRefGoogle Scholar
  29. 29.
    Schuppin, G. T., Pons, S., Hugl, S., Aiello, L. P., King, G. L., White, M., and Rhodes, C. J. 1998 A specific increased expression of insulin receptor substrate 2 in pancreatic beta-cell lines is involved in mediating serum-stimulated beta-cell growth. Diabetes 47, 1074–1085PubMedCrossRefGoogle Scholar
  30. 30.
    Withers, D. J., Gutierrez, J. S., Towery, H., Burks, D. J., Ren, J. M., previs, S., Zhang, Y., Bernal, D., Pons, S., Shulman, G. I., Bonner-Weir, S., and White, M. F. 1998 Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391, 900–904PubMedCrossRefGoogle Scholar
  31. 31.
    Harbeck, M. C., Louie, D. C., Howland, J., Wolf, B. A., and Rothenberg, P. L. 1996 ) Expression of insulin receptor mRNA and insulin receptor substrate 1 in pancreatic islet beta-cells. Diabetes 45, 711–717PubMedCrossRefGoogle Scholar
  32. 32.
    Xu, G., Marshall, C. A., Lin, T.-A., Kwon, G., Munivenkatappa, R. B., Hill, J. R., Lawrence, J. C., Jr., and McDaniel, M. L. 1998 Insulin mediates glucose-stimulated phosphorylation of PHAS-I by pancreatic beta cells. J. Biol. Chem. 273, 4485–4491PubMedCrossRefGoogle Scholar
  33. 33.
    Xu, G., Kwon, G., Marshall, C. A., Lin, T.-A., Lawrence, J. C., Jr., and McDaniel, M. L. 1998 Branched-chain amino acids are essential in the regulation of PHAS-1 and p70 S6 kinase by pancreatic b-cells. J. Biol. Chem. 273, 28178–28184PubMedCrossRefGoogle Scholar
  34. 34.
    Akiyama, T., Ishida, J., Nakagawa, S., Ogawara, H., Watanabe, S., Itoh, N., Shibuya, M., and Fukami, Y. 1987 Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 262, 5592–5595PubMedGoogle Scholar
  35. 35.
    Rao, G. N., Delafontaine, P., and Runge, M. S. 1995 Thrombin stimulates phosphorylation of insulin-like growth factor-1 receptor, insulin receptor substrate-1, and phospholipase C-gamma 1 in rat aortic smooth muscle cells. J. Biol. Chem. 270, 27871–27875PubMedCrossRefGoogle Scholar
  36. 36.
    Corbett, J. A., Kwon, G., Misko, T. P., Rodi, C. P., and McDaniel, M. L. 1994 Tyrosine kinase involvement in IL-1 beta-induced expression of iNOS by beta-cells purified from islets of Langerhans. Am. J. Physiol. 267, C48–054PubMedGoogle Scholar
  37. 37.
    Kwon, G., Corbett, J. A., Rodi, C. P., Sullivan, P., and McDaniel, M. L. 1995 Interleukin-1 beta-induced nitric oxide synthase expression by rat pancreatic beta-cells: evidence for the involvement of nuclear factor kappa B in the signaling mechanism. Endocrinology 136, 4790–4795PubMedCrossRefGoogle Scholar
  38. 38.
    Patti, M. E., Barmbilla, E., Luzi, L., Landaker, E. J., and Kahn, C. R. 1998 Bidirectional modulation of insulin action by amino acids. J. Clin. Invest. 101, 1519–1592PubMedCrossRefGoogle Scholar
  39. 39.
    May, M. E., and Buse, M. G. 1989 Effects of branched-chain amino acids on protein turnover. Diabetes Metab. Rev. 5, 227–245Google Scholar
  40. 40.
    Li, J. B., and Jefferson, L. S. 1978 Influence of amino acid availability on protein turnover in perfused skeletal muscle. Biochim. Biophys. Acta 544, 351–359PubMedCrossRefGoogle Scholar
  41. 41.
    Shigemitsu, K., Tsujishita, Y., Hara, K., Nanahoshi, M., Avruch, J., and Yonezawa, K. 1999 Regulation of translational effectors by amino acid and mammalian target of rapamycin signaling pathways: possible involvement of autophagy in cultured hepatoma cells. J. Biol. Chem. 274, 1058–1065PubMedCrossRefGoogle Scholar
  42. 42.
    Mortimore, G. E., Poso, A. R., Kadowake, M., and Wert, J., J. J., 1987 Multiphasic control of hepatic protein degradation by regulatory amino acids: general features and hormonal modulation. J. Biol. Chem. 262, 16322–16327PubMedGoogle Scholar
  43. 43.
    Swenne, I. 1992 Pancreatic beta-cell growth and diabetes mellitus. Diabetologia 35, 193–201PubMedCrossRefGoogle Scholar
  44. 44.
    Xu, G., Kwon, G., Cruz, W., Marshall, C. A., and McDaniel, M. L. 2001 Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic b-cells. Diabetes 50, 353–360.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Guim Kwon
    • 1
  • Guang Xu
    • 1
  • Wilhelm S. Cruz
    • 1
  • Connie A. Marshall
    • 1
  • Michael L. McDaniel
    • 1
  1. 1.Washington University School of MedicineSt LouisUSA

Personalised recommendations