Skip to main content

Post-Transcriptional Regulation of Iron Metabolism

  • Chapter
RNA Binding Proteins

Part of the book series: Endocrine Updates ((ENDO,volume 16))

  • 235 Accesses

Abstract

Over the last fifteen years, much insight has been gained into the processes that determine how iron will be transported and utilized in cells and animals. Regulation of iron metabolism is important because iron is required for function of numerous proteins such as hemoglobin, but excess iron can react with oxygen species to generate free radicals and oxidative damage. Many human diseases are caused by insufficient or excess iron uptake, including iron deficiency anemia, a major health problem throughout the developing world, and hemochromatosis, an inherited iron overload syndrome that leads to serious disease in the Western world (1). Because iron is both indispensable and potentially toxic, virtually all cells and organisms regulate uptake and utilization of iron. The regulation of many iron metabolism proteins, including ferritin and transferrin receptor depends upon binding of iron regulatory proteins to RNA stem-loops found within the transcripts that encode these proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sheth, S. and Brittenham, G. M. (2000) Genetic disorders affecting proteins of iron metabolism: clinical implications Annu Rev Med 51, 443–464.

    Article  PubMed  CAS  Google Scholar 

  2. Rouault, T. and Klausner, R. (1997) Regulation of iron metabolism in eukaryotes. Curr Top Cell Regul 35, 1–19.

    Article  PubMed  CAS  Google Scholar 

  3. Hentze, M. W. and Kuhn, L. C. (1996) Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA 93, 8175–8182.

    Article  PubMed  CAS  Google Scholar 

  4. Andrews, N. C., Fleming, M. D. and Gunshin, H. (1999) Iron transport across biologic membranes. Nutr Rev 57, 114–123.

    Article  PubMed  CAS  Google Scholar 

  5. Gunshin, H., Mackenzie, B., Berger, U. V., Gunshin, Y., Romero, M. F., Boron, W. F., Nussberger, S., Gollan, J. L. and Hediger, M. A. (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482–488.

    Article  PubMed  CAS  Google Scholar 

  6. Abboud, S. and Haile, D. J. (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. JBiol Chem 275, 19906–19912

    Article  CAS  Google Scholar 

  7. Donovan, A., Brownlie, A., Zhou, Y., Shepard, J., Pratt, S. J., Moynihan, J., Paw, B. H., Drejer, A., Barut, B., Zapata, A., Law, T. C., Brugnara, C., Lux, S. E., Pinkus, G. S., Pinkus, J. L., Kingsley, P. D., Palis, J., Fleming, M. D., Andrews, N. C. and Zon, L. I. (2000). Positional cloning of zebrafish ferroportinl identifies a conserved vertebrate iron exporter. Nature 403, 776–781

    Article  PubMed  CAS  Google Scholar 

  8. Ponka, P. (1999) Cellular iron metabolism. Kidney Int Suppl 69, S2–11

    Article  PubMed  CAS  Google Scholar 

  9. Klausner, R. D., Rouault, T. A. and Harford, J. B. (1993) Regulating the fate of mRNA: the control of cellular iron metabolism Cell 72, 19–28

    Article  PubMed  CAS  Google Scholar 

  10. Halliwell, B. and Gutteridge, J. M. (1992) Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett 307, 108–112

    Article  PubMed  CAS  Google Scholar 

  11. Cozzi, A., Corsi, B., Levi, S., Santambrogio, P., Albertini, A. and Arosio, P. (2000). Overexpression of wild type and mutated human ferritin H-chain in HeLa cells: in vivo role of ferritin ferroxidase activity. JBiol Chem 275, 25122–25129

    Article  CAS  Google Scholar 

  12. Theil, E. C. (1987). Ferritins Ann Rev Biochem 56, 289–315

    Article  PubMed  CAS  Google Scholar 

  13. Radisky, D. C. and Kaplan, J. (1998). Iron in cytosolic ferritin can be recycled through lysosomal degradation in human fibroblasts. Biochem J 336, (Pt 1 ): 201–5

    Google Scholar 

  14. Ke, Y., Wu, J., Leibold, E. A., Walden, W. E. and Theil, E. C. (1998). Loops and bulge/loops in iron-responsive element isoforms influence iron regulatory protein binding. Fine-tuning of mRNA regulation? JBiol Chem 273, 23637–23640

    Article  CAS  Google Scholar 

  15. Allerson, C. R., Cazzola, M. and Rouault, T. A. (1999). Clinical severity and thermodynamic effects of iron-responsive element mutations in hereditary hyperferritinemia-cataract syndrome. JBiol Chem 274, 26439–26447

    Article  CAS  Google Scholar 

  16. Leibold, E. A., Laudano, A. and Yu, Y. (1990). Structural requirements of iron-responsive elements for binding of the protein involved in both transferrin receptor and ferritin mRNApost-transcriptional regulation. Nucleic Acids Res 18, 1819–1824

    Article  PubMed  CAS  Google Scholar 

  17. Henderson, B. R., Menotti, E., Bonnard, C. and Kuhn, L. C. (1994). Optimal sequence and structure of iron-responsive elements -selection of RNA stem-loops with high-affinity for iron regulatory factor JBiol Chem 269, 17481–17489

    CAS  Google Scholar 

  18. Addess, K. J., Basilion, J. P., Klausner, R. D., Rouault, T. A. and Pardi, A. J. (1997). Structure and Dynamics of the Iron Responsive Element RNA: Implications for Binding of the RNA by Iron Regulatory Proteins. JMoI Biol 274, 72–83

    Article  CAS  Google Scholar 

  19. Gdaniec, Z., Sierzputowska-Gracz, H. and Theil, E. C. (1998). Iron regulatory element and internal loop/bulge structure for ferritin mRNA studied by cobalt(III) hexammine binding, molecular modeling, and NMR spectroscopy. Biochemistry 37, 1505–1512

    Article  PubMed  CAS  Google Scholar 

  20. Butt, J., Kim, H. Y., Basilion, J. P., Cohen, S., Iwai, K., Philpott, C. C., Altschul, S., Klausner, R. D. and Rouault, T. A. (1996). Differences in the RNA binding sites of iron regulatory proteins and potential target diversity Proc Natl Acad SciUSA 93, 4345–4349

    Article  CAS  Google Scholar 

  21. Bhasker, C. R., Burgiel, G., Neupert, B., Emery-Goodman, A., Kuhn, L. C. and May, B. K. (1993). The putative iron-responsive element in the human erythroid 5aminolevulinate synthase mRNA mediates translational control. J Biol Chem 268, 12699–12705

    PubMed  CAS  Google Scholar 

  22. Melefors, O., Goossen, B., Johansson, H. E., Stripecke, R., Gray, N. K. and Hentze, M. W. (1993). Translational control of 5-aminolevulinate synthase mRNA by iron-responsive elements in erythroid cells. J Biol Chem 268, 5974–5978

    PubMed  Google Scholar 

  23. Kim, H. Y., LaVaute, T., Iwai, K., Klausner, R. D. and Rouault, T. A. (1996). Identification of a conserved and functional iron-responsive element in the 5’UTR of mammalian mitochondria) aconitase. JBiol Chem 271, 24226–24230

    Article  CAS  Google Scholar 

  24. Gray, N. K., Pantopoulos, K., Dandekar, T., Ackrell, B. A. C. and Hentze, M. W. (1996). Translational regulation of mammalian and drosophila citric-acid cycle enzymes via iron-responsive elements. Proc. Natl. Acad. Sci. U.S.A. 93, 4925–4930

    Article  PubMed  CAS  Google Scholar 

  25. Kohler, S. A., Henderson, B. R. and Kuhn, L. C. (1995). Succinate dehydrogenase b mRNA of Drosophila melanogaster has a functional iron-responsive element in its 5’untranslated region. J Bio! Chem 270, 30781–30786

    Article  CAS  Google Scholar 

  26. Fleming, M. D., Trenor, C. C. r., Su, M. A., Foernzler, D., Beier, D. R., Dietrich, W. F. and Andrews, N. C. (1997). Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet 16, 383–386

    PubMed  CAS  Google Scholar 

  27. Binder, R., Horowitz, J. A., Basilion, J. P., Koeller, D. M., Klausner, R. D. and Harford, J. B. (1994). Evidence that the pathway of transferrin receptor mRNA degradation involves an endonucleolytic cleavage within the 3’UTR and does not involve poly(A) tail shortening. EMBO J 13, 1969–1980

    PubMed  CAS  Google Scholar 

  28. Beaumont, C., Leneuve, P., Devaux, I., Scoazec, J. Y., Berthier, M., Loiseau, M. N., Grandchamp, B. and Bonneau, D. (1995). Mutation in the iron responsive element of the L ferritin mRNA in a family with dominant hyperferritinaemia and cataract. Nat Genet 11, 444–46

    Article  PubMed  CAS  Google Scholar 

  29. Girelli, D., Corrocher, R., Bisceglia, L., Olivieri, O., De Franceschi, L., Zelante, L. and Gasparini, P. (1995). Molecular basis for the recently described hereditary hyperferritinemia-cataract syndrome: a mutation in the iron-responsive element of ferritin L-subunit gene (the Verona mutation). Blood 86, 4050–4053

    PubMed  CAS  Google Scholar 

  30. Muckenthaler, M., Gray, N. K. and Hentze, M. W. (1998). IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F. Mol Cell 2, 383–388

    Article  PubMed  CAS  Google Scholar 

  31. Leibold, E. A. and Munro, H. N (1988). Cytoplasmic protein binds in vitro to a highly conserved sequence in the 5’ untranslated region of ferritin heavy-and light-subunit mRNAs. Proc. Natl Acad Sci USA 85, 2171–2175

    Article  PubMed  CAS  Google Scholar 

  32. Rouault, T. A., Tang, C. K., Kaptain, S., Burgess, W. H., Haile, D. J., Samaniego, F., McBride, O. W., Harford, J. B. and Klausner, R. D. (1990). Cloning of the cDNA encoding an RNA regulatory protein-the human iron-responsive element-binding protein. Proc Natl Acad Sci USA 87, 7958–7962

    Article  PubMed  CAS  Google Scholar 

  33. Hirling, H., Emery-Goodman, A., Thompson, N., Neupert, B., Seiser, C. and Kuhn, L. C. (1992). Expression of active iron regulatory factor from a full-length human cDNA by in vitro transcription/translation. Nuc. Acids Res. 20, 33–39

    Article  CAS  Google Scholar 

  34. Patino, M. M. and Walden, W. E. (1992). Cloning of a functional cDNA for the Rabbit Ferritin mRNA Repressor. Protein: Demonstration of a Tissue Specific Pattern of Expression JBiol Chem 267, 19011–19016

    CAS  Google Scholar 

  35. Yu, Y., Radisky, E. and Leibold, E. A. (1992). The Iron-Responsive Element Binding Protein: Purification, Cloning and Regulation in Rat Liver. J Biol Chem 267, 19005–19010

    PubMed  CAS  Google Scholar 

  36. Samaniego, F., Chin, J., Iwai, K., Rouault, T. A. and Klausner, R. D. (1994). Molecular Characterization of a Second Iron Responsive Element Binding Protein, Iron Regulatory Protein 2 (IRP2): Structure, Function and Post-translational Regulation. J Biol Chem 269, 30904–30910

    Google Scholar 

  37. Guo, B., Yu, Y. and Leibold, E. A. (1994). Iron regulates cytoplasmic levels of a novel iron-responsive element-binding protein without aconitase activity. J Biol Chem 269, 24252–24260

    PubMed  CAS  Google Scholar 

  38. Gruer, M. J., Artymiuk, P. J. and Guest, J. R. (1997). The aconitase family: three structural variations on a common theme. Trends Biochem Sci 22, 3–6

    Article  PubMed  CAS  Google Scholar 

  39. Kennedy, M. C., Mende-Mueller, L., Blondin, G. A. and Beinert, H. (1992). Purification and characterization of cytosolic aconitase from beef liver and its relationship to the iron-responsive element binding protein (IRE-BP). Proc Natl Acad. Sci 89, 11730–11734

    Article  PubMed  CAS  Google Scholar 

  40. Rouault, T. A. and Klausner, R. D. (1996). Iron-sulfur clusters as biosensors of oxidants and iron. Trends in Biochem Sci 21, 174–177

    CAS  Google Scholar 

  41. Land, T. and Rouault, T. A. (1998). Targeting of a human iron-sulfur cluster assembly enzyme, nifs, to different subcellular compartments is regulated through alternative AUG utilization. Mol Cell 2, 807–815

    Article  PubMed  CAS  Google Scholar 

  42. Tong, W. H. and Rouault, T. (2000). Distinct iron-sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J 19, 5692–5700

    Article  PubMed  CAS  Google Scholar 

  43. Pantopoulos, K. and Hentze, M. W. (1998). Activation of iron regulatory protein-1 by oxidative stress in vitro. Proc Natl Acad Sci USA 95, 10559–10563

    Article  CAS  Google Scholar 

  44. Oliveira, L. and Drapier, J. C. (2000). Down-regulation of iron regulatory protein 1 gene expression by nitric oxide. Proc Natl Acad Sci USA 97, 6550–6555

    Article  PubMed  CAS  Google Scholar 

  45. Robbins, A. H. and Stout, C. D. (1989). The structure of aconitase. Proteins 5, 289–312

    Article  PubMed  CAS  Google Scholar 

  46. Rouault, T. A., Stout, C. D., Kaptain, S., Harford, J. B. and Klausner, R. D (1991).. Structural relationship between an iron-regulated RNA-binding protein (IRE-BP) and aconitase: functional implications Cell 64, 881–883

    Google Scholar 

  47. Swenson, G. R. and Walden, W. E. (1994). Localization of an RNA binding element of the iron responsive element binding protein within a proteolytic fragment containing iron coordination ligands. Nuc Acids Res 22, 2627–2633

    Article  CAS  Google Scholar 

  48. Basilion, J. P., Rouault, T. A., Massinople, C. M., Klausner, R. D. and Burgess, W. H. (1994). The iron-responsive element-binding protein: Localization of the RNA binding site to the aconitase active-site cleft. Proc.Natl Acad Sci U.S.A. 91, 574–578

    Article  PubMed  CAS  Google Scholar 

  49. Philpott, C. C., Klausner, R. D. and Rouault, T. A. (1994). The bifunctional iron-responsive element binding protein/cytosolic aconitase: The role of active-site residues in ligand binding and regulation. Proc Natl Acad Sci 91, 7321–7325

    Article  PubMed  CAS  Google Scholar 

  50. Hirling, H., Henderson, B. R. and Kuhn, L. C. (1994). Mutational analysis of the [4Fe4S]-cluster converting iron regulatory factor from its RNA-binding form to cytoplasmic aconitase EMBO Journal 13, 453–461

    PubMed  CAS  Google Scholar 

  51. Guo, B., Phillips, J. D., Yu, Y. and Leibold, E. A. (1995). Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome. J Biol Chem 270, 21645–21651

    Article  PubMed  CAS  Google Scholar 

  52. Iwai, K., Klausner, R. D. and Rouault, T. A. (1995). Requirements for iron-regulated degradation of the RNA binding protein, iron regulatory protein 2. EMBO J 14, 53505357

    Google Scholar 

  53. Iwai, K., Drake, S. K., Wehr, N. B., Weissman, A. M., LaVaute, T., Minato, N., Klausner, R. D., Levine, R. L. and Rouault, T. A. (1998). Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidized proteins. Proc Nati Acad Sci U S A 95, 4924–4928

    Article  CAS  Google Scholar 

  54. Hanson, E. S. and Leibold, E. A. (1999). Regulation of the iron regulatory proteins by reactive nitrogen and oxygen species. Gene Expr 7, 367–376

    PubMed  CAS  Google Scholar 

  55. Kim, H. Y., Klausner, R. D. and Rouault, T. A. (1995). Translational repressor activity is equivalent and is quantitatively predicted by in vitro RNA binding for two iron-responsive element binding proteins, IRP1 and IRP2. J Biol Chem 270, 4983–4986

    Article  PubMed  CAS  Google Scholar 

  56. LaVaute, T., Smith, S., Cooperman, S., Iwai, K., Land, W., Meyron-Holtz, E., Drake, S. K., Miller, G., Abu-Asab, M., Tsokos, M., Switzer III, R., Grinberg, A., Love, P., Tresser, N. and Rouault, T. A. (2001) Targeted deletion of iron regulatory protein 2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nature Genetics 27, 209–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rouault, T.A. (2002). Post-Transcriptional Regulation of Iron Metabolism. In: Sandberg, K., Mulroney, S.E. (eds) RNA Binding Proteins. Endocrine Updates, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6446-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6446-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4935-6

  • Online ISBN: 978-1-4757-6446-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics