Post-Transcriptional Regulation of Iron Metabolism

  • Tracey A. Rouault
Part of the Endocrine Updates book series (ENDO, volume 16)

Abstract

Over the last fifteen years, much insight has been gained into the processes that determine how iron will be transported and utilized in cells and animals. Regulation of iron metabolism is important because iron is required for function of numerous proteins such as hemoglobin, but excess iron can react with oxygen species to generate free radicals and oxidative damage. Many human diseases are caused by insufficient or excess iron uptake, including iron deficiency anemia, a major health problem throughout the developing world, and hemochromatosis, an inherited iron overload syndrome that leads to serious disease in the Western world (1). Because iron is both indispensable and potentially toxic, virtually all cells and organisms regulate uptake and utilization of iron. The regulation of many iron metabolism proteins, including ferritin and transferrin receptor depends upon binding of iron regulatory proteins to RNA stem-loops found within the transcripts that encode these proteins.

Keywords

Iron Metabolism Iron Regulatory Protein Ferritin mRNA Mitochondrial Aconitase Cytosolic Aconitase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sheth, S. and Brittenham, G. M. (2000) Genetic disorders affecting proteins of iron metabolism: clinical implications Annu Rev Med 51, 443–464.PubMedCrossRefGoogle Scholar
  2. 2.
    Rouault, T. and Klausner, R. (1997) Regulation of iron metabolism in eukaryotes. Curr Top Cell Regul 35, 1–19.PubMedCrossRefGoogle Scholar
  3. 3.
    Hentze, M. W. and Kuhn, L. C. (1996) Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA 93, 8175–8182.PubMedCrossRefGoogle Scholar
  4. 4.
    Andrews, N. C., Fleming, M. D. and Gunshin, H. (1999) Iron transport across biologic membranes. Nutr Rev 57, 114–123.PubMedCrossRefGoogle Scholar
  5. 5.
    Gunshin, H., Mackenzie, B., Berger, U. V., Gunshin, Y., Romero, M. F., Boron, W. F., Nussberger, S., Gollan, J. L. and Hediger, M. A. (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482–488.PubMedCrossRefGoogle Scholar
  6. 6.
    Abboud, S. and Haile, D. J. (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. JBiol Chem 275, 19906–19912CrossRefGoogle Scholar
  7. 7.
    Donovan, A., Brownlie, A., Zhou, Y., Shepard, J., Pratt, S. J., Moynihan, J., Paw, B. H., Drejer, A., Barut, B., Zapata, A., Law, T. C., Brugnara, C., Lux, S. E., Pinkus, G. S., Pinkus, J. L., Kingsley, P. D., Palis, J., Fleming, M. D., Andrews, N. C. and Zon, L. I. (2000). Positional cloning of zebrafish ferroportinl identifies a conserved vertebrate iron exporter. Nature 403, 776–781PubMedCrossRefGoogle Scholar
  8. 8.
    Ponka, P. (1999) Cellular iron metabolism. Kidney Int Suppl 69, S2–11PubMedCrossRefGoogle Scholar
  9. 9.
    Klausner, R. D., Rouault, T. A. and Harford, J. B. (1993) Regulating the fate of mRNA: the control of cellular iron metabolism Cell 72, 19–28PubMedCrossRefGoogle Scholar
  10. 10.
    Halliwell, B. and Gutteridge, J. M. (1992) Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett 307, 108–112PubMedCrossRefGoogle Scholar
  11. 11.
    Cozzi, A., Corsi, B., Levi, S., Santambrogio, P., Albertini, A. and Arosio, P. (2000). Overexpression of wild type and mutated human ferritin H-chain in HeLa cells: in vivo role of ferritin ferroxidase activity. JBiol Chem 275, 25122–25129CrossRefGoogle Scholar
  12. 12.
    Theil, E. C. (1987). Ferritins Ann Rev Biochem 56, 289–315PubMedCrossRefGoogle Scholar
  13. 13.
    Radisky, D. C. and Kaplan, J. (1998). Iron in cytosolic ferritin can be recycled through lysosomal degradation in human fibroblasts. Biochem J 336, (Pt 1 ): 201–5Google Scholar
  14. 14.
    Ke, Y., Wu, J., Leibold, E. A., Walden, W. E. and Theil, E. C. (1998). Loops and bulge/loops in iron-responsive element isoforms influence iron regulatory protein binding. Fine-tuning of mRNA regulation? JBiol Chem 273, 23637–23640CrossRefGoogle Scholar
  15. 15.
    Allerson, C. R., Cazzola, M. and Rouault, T. A. (1999). Clinical severity and thermodynamic effects of iron-responsive element mutations in hereditary hyperferritinemia-cataract syndrome. JBiol Chem 274, 26439–26447CrossRefGoogle Scholar
  16. 16.
    Leibold, E. A., Laudano, A. and Yu, Y. (1990). Structural requirements of iron-responsive elements for binding of the protein involved in both transferrin receptor and ferritin mRNApost-transcriptional regulation. Nucleic Acids Res 18, 1819–1824PubMedCrossRefGoogle Scholar
  17. 17.
    Henderson, B. R., Menotti, E., Bonnard, C. and Kuhn, L. C. (1994). Optimal sequence and structure of iron-responsive elements -selection of RNA stem-loops with high-affinity for iron regulatory factor JBiol Chem 269, 17481–17489Google Scholar
  18. 18.
    Addess, K. J., Basilion, J. P., Klausner, R. D., Rouault, T. A. and Pardi, A. J. (1997). Structure and Dynamics of the Iron Responsive Element RNA: Implications for Binding of the RNA by Iron Regulatory Proteins. JMoI Biol 274, 72–83CrossRefGoogle Scholar
  19. 19.
    Gdaniec, Z., Sierzputowska-Gracz, H. and Theil, E. C. (1998). Iron regulatory element and internal loop/bulge structure for ferritin mRNA studied by cobalt(III) hexammine binding, molecular modeling, and NMR spectroscopy. Biochemistry 37, 1505–1512PubMedCrossRefGoogle Scholar
  20. 20.
    Butt, J., Kim, H. Y., Basilion, J. P., Cohen, S., Iwai, K., Philpott, C. C., Altschul, S., Klausner, R. D. and Rouault, T. A. (1996). Differences in the RNA binding sites of iron regulatory proteins and potential target diversity Proc Natl Acad SciUSA 93, 4345–4349CrossRefGoogle Scholar
  21. 21.
    Bhasker, C. R., Burgiel, G., Neupert, B., Emery-Goodman, A., Kuhn, L. C. and May, B. K. (1993). The putative iron-responsive element in the human erythroid 5aminolevulinate synthase mRNA mediates translational control. J Biol Chem 268, 12699–12705PubMedGoogle Scholar
  22. 22.
    Melefors, O., Goossen, B., Johansson, H. E., Stripecke, R., Gray, N. K. and Hentze, M. W. (1993). Translational control of 5-aminolevulinate synthase mRNA by iron-responsive elements in erythroid cells. J Biol Chem 268, 5974–5978PubMedGoogle Scholar
  23. 23.
    Kim, H. Y., LaVaute, T., Iwai, K., Klausner, R. D. and Rouault, T. A. (1996). Identification of a conserved and functional iron-responsive element in the 5’UTR of mammalian mitochondria) aconitase. JBiol Chem 271, 24226–24230CrossRefGoogle Scholar
  24. 24.
    Gray, N. K., Pantopoulos, K., Dandekar, T., Ackrell, B. A. C. and Hentze, M. W. (1996). Translational regulation of mammalian and drosophila citric-acid cycle enzymes via iron-responsive elements. Proc. Natl. Acad. Sci. U.S.A. 93, 4925–4930PubMedCrossRefGoogle Scholar
  25. 25.
    Kohler, S. A., Henderson, B. R. and Kuhn, L. C. (1995). Succinate dehydrogenase b mRNA of Drosophila melanogaster has a functional iron-responsive element in its 5’untranslated region. J Bio! Chem 270, 30781–30786CrossRefGoogle Scholar
  26. 26.
    Fleming, M. D., Trenor, C. C. r., Su, M. A., Foernzler, D., Beier, D. R., Dietrich, W. F. and Andrews, N. C. (1997). Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet 16, 383–386PubMedGoogle Scholar
  27. 27.
    Binder, R., Horowitz, J. A., Basilion, J. P., Koeller, D. M., Klausner, R. D. and Harford, J. B. (1994). Evidence that the pathway of transferrin receptor mRNA degradation involves an endonucleolytic cleavage within the 3’UTR and does not involve poly(A) tail shortening. EMBO J 13, 1969–1980PubMedGoogle Scholar
  28. 28.
    Beaumont, C., Leneuve, P., Devaux, I., Scoazec, J. Y., Berthier, M., Loiseau, M. N., Grandchamp, B. and Bonneau, D. (1995). Mutation in the iron responsive element of the L ferritin mRNA in a family with dominant hyperferritinaemia and cataract. Nat Genet 11, 444–46PubMedCrossRefGoogle Scholar
  29. 29.
    Girelli, D., Corrocher, R., Bisceglia, L., Olivieri, O., De Franceschi, L., Zelante, L. and Gasparini, P. (1995). Molecular basis for the recently described hereditary hyperferritinemia-cataract syndrome: a mutation in the iron-responsive element of ferritin L-subunit gene (the Verona mutation). Blood 86, 4050–4053PubMedGoogle Scholar
  30. 30.
    Muckenthaler, M., Gray, N. K. and Hentze, M. W. (1998). IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F. Mol Cell 2, 383–388PubMedCrossRefGoogle Scholar
  31. 31.
    Leibold, E. A. and Munro, H. N (1988). Cytoplasmic protein binds in vitro to a highly conserved sequence in the 5’ untranslated region of ferritin heavy-and light-subunit mRNAs. Proc. Natl Acad Sci USA 85, 2171–2175PubMedCrossRefGoogle Scholar
  32. 32.
    Rouault, T. A., Tang, C. K., Kaptain, S., Burgess, W. H., Haile, D. J., Samaniego, F., McBride, O. W., Harford, J. B. and Klausner, R. D. (1990). Cloning of the cDNA encoding an RNA regulatory protein-the human iron-responsive element-binding protein. Proc Natl Acad Sci USA 87, 7958–7962PubMedCrossRefGoogle Scholar
  33. 33.
    Hirling, H., Emery-Goodman, A., Thompson, N., Neupert, B., Seiser, C. and Kuhn, L. C. (1992). Expression of active iron regulatory factor from a full-length human cDNA by in vitro transcription/translation. Nuc. Acids Res. 20, 33–39CrossRefGoogle Scholar
  34. 34.
    Patino, M. M. and Walden, W. E. (1992). Cloning of a functional cDNA for the Rabbit Ferritin mRNA Repressor. Protein: Demonstration of a Tissue Specific Pattern of Expression JBiol Chem 267, 19011–19016Google Scholar
  35. 35.
    Yu, Y., Radisky, E. and Leibold, E. A. (1992). The Iron-Responsive Element Binding Protein: Purification, Cloning and Regulation in Rat Liver. J Biol Chem 267, 19005–19010PubMedGoogle Scholar
  36. 36.
    Samaniego, F., Chin, J., Iwai, K., Rouault, T. A. and Klausner, R. D. (1994). Molecular Characterization of a Second Iron Responsive Element Binding Protein, Iron Regulatory Protein 2 (IRP2): Structure, Function and Post-translational Regulation. J Biol Chem 269, 30904–30910Google Scholar
  37. 37.
    Guo, B., Yu, Y. and Leibold, E. A. (1994). Iron regulates cytoplasmic levels of a novel iron-responsive element-binding protein without aconitase activity. J Biol Chem 269, 24252–24260PubMedGoogle Scholar
  38. 38.
    Gruer, M. J., Artymiuk, P. J. and Guest, J. R. (1997). The aconitase family: three structural variations on a common theme. Trends Biochem Sci 22, 3–6PubMedCrossRefGoogle Scholar
  39. 39.
    Kennedy, M. C., Mende-Mueller, L., Blondin, G. A. and Beinert, H. (1992). Purification and characterization of cytosolic aconitase from beef liver and its relationship to the iron-responsive element binding protein (IRE-BP). Proc Natl Acad. Sci 89, 11730–11734PubMedCrossRefGoogle Scholar
  40. 40.
    Rouault, T. A. and Klausner, R. D. (1996). Iron-sulfur clusters as biosensors of oxidants and iron. Trends in Biochem Sci 21, 174–177Google Scholar
  41. 41.
    Land, T. and Rouault, T. A. (1998). Targeting of a human iron-sulfur cluster assembly enzyme, nifs, to different subcellular compartments is regulated through alternative AUG utilization. Mol Cell 2, 807–815PubMedCrossRefGoogle Scholar
  42. 42.
    Tong, W. H. and Rouault, T. (2000). Distinct iron-sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J 19, 5692–5700PubMedCrossRefGoogle Scholar
  43. 43.
    Pantopoulos, K. and Hentze, M. W. (1998). Activation of iron regulatory protein-1 by oxidative stress in vitro. Proc Natl Acad Sci USA 95, 10559–10563CrossRefGoogle Scholar
  44. 44.
    Oliveira, L. and Drapier, J. C. (2000). Down-regulation of iron regulatory protein 1 gene expression by nitric oxide. Proc Natl Acad Sci USA 97, 6550–6555PubMedCrossRefGoogle Scholar
  45. 45.
    Robbins, A. H. and Stout, C. D. (1989). The structure of aconitase. Proteins 5, 289–312PubMedCrossRefGoogle Scholar
  46. 46.
    Rouault, T. A., Stout, C. D., Kaptain, S., Harford, J. B. and Klausner, R. D (1991).. Structural relationship between an iron-regulated RNA-binding protein (IRE-BP) and aconitase: functional implications Cell 64, 881–883Google Scholar
  47. 47.
    Swenson, G. R. and Walden, W. E. (1994). Localization of an RNA binding element of the iron responsive element binding protein within a proteolytic fragment containing iron coordination ligands. Nuc Acids Res 22, 2627–2633CrossRefGoogle Scholar
  48. 48.
    Basilion, J. P., Rouault, T. A., Massinople, C. M., Klausner, R. D. and Burgess, W. H. (1994). The iron-responsive element-binding protein: Localization of the RNA binding site to the aconitase active-site cleft. Proc.Natl Acad Sci U.S.A. 91, 574–578PubMedCrossRefGoogle Scholar
  49. 49.
    Philpott, C. C., Klausner, R. D. and Rouault, T. A. (1994). The bifunctional iron-responsive element binding protein/cytosolic aconitase: The role of active-site residues in ligand binding and regulation. Proc Natl Acad Sci 91, 7321–7325PubMedCrossRefGoogle Scholar
  50. 50.
    Hirling, H., Henderson, B. R. and Kuhn, L. C. (1994). Mutational analysis of the [4Fe4S]-cluster converting iron regulatory factor from its RNA-binding form to cytoplasmic aconitase EMBO Journal 13, 453–461PubMedGoogle Scholar
  51. 51.
    Guo, B., Phillips, J. D., Yu, Y. and Leibold, E. A. (1995). Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome. J Biol Chem 270, 21645–21651PubMedCrossRefGoogle Scholar
  52. 52.
    Iwai, K., Klausner, R. D. and Rouault, T. A. (1995). Requirements for iron-regulated degradation of the RNA binding protein, iron regulatory protein 2. EMBO J 14, 53505357Google Scholar
  53. 53.
    Iwai, K., Drake, S. K., Wehr, N. B., Weissman, A. M., LaVaute, T., Minato, N., Klausner, R. D., Levine, R. L. and Rouault, T. A. (1998). Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidized proteins. Proc Nati Acad Sci U S A 95, 4924–4928CrossRefGoogle Scholar
  54. 54.
    Hanson, E. S. and Leibold, E. A. (1999). Regulation of the iron regulatory proteins by reactive nitrogen and oxygen species. Gene Expr 7, 367–376PubMedGoogle Scholar
  55. 55.
    Kim, H. Y., Klausner, R. D. and Rouault, T. A. (1995). Translational repressor activity is equivalent and is quantitatively predicted by in vitro RNA binding for two iron-responsive element binding proteins, IRP1 and IRP2. J Biol Chem 270, 4983–4986PubMedCrossRefGoogle Scholar
  56. 56.
    LaVaute, T., Smith, S., Cooperman, S., Iwai, K., Land, W., Meyron-Holtz, E., Drake, S. K., Miller, G., Abu-Asab, M., Tsokos, M., Switzer III, R., Grinberg, A., Love, P., Tresser, N. and Rouault, T. A. (2001) Targeted deletion of iron regulatory protein 2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nature Genetics 27, 209–14.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Tracey A. Rouault
    • 1
  1. 1.NICHD, NIHBethesdaUSA

Personalised recommendations