Salt, Chlor-Alkali, and Related Heavy Chemicals

  • Indresh Mathur


Common salt, sodium chloride, occurs in nature in almost unlimited quantities. It is a direct source of chlorine, caustic soda (sodium hydroxide), sodium chlorate, synthetic soda ash (sodium carbonate), sodium metal, and sodium sulfate. Indirectly, it is also the source of hydrochloric acid and a host of sodium salts. It has an imposing list of uses, placing it among the more important substances in the economic world. It is used to preserve meat, fish, and hides; it is a necessary component of the animal diet; it is used in refrigeration systems; and large quantities are used for ice control on highways in colder climates. Salt is used by the soap maker to separate soap from glycerine and lye, and by the dye manufacturer to precipitate dye products. In addition, salt is used extensively for the regeneration of water-softening resins (see Table 12.1).


Sodium Silicate Caustic Soda Sodium Sulfite Chlorine Dioxide Sodium Chlorate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kauffman, D. W., Sodium Chloride, Van Nostrand Reinhold, New York, 1960.Google Scholar
  2. 2.
    Leddy, J. J., J. Chem. Ed., 47, 386 (1970).CrossRefGoogle Scholar
  3. 3.
    Chemical Economics Handbook,Stanford Research Institute, Menlo Park, CA, 1988.Google Scholar
  4. 4.
    Chemical Economics Handbook,Stanford Research Institute, Menlo Park, CA, 1990.Google Scholar
  5. 5.
    Chemical Economics Handbook,Stanford Research Institute, Menlo Park, CA, 1987.Google Scholar
  6. 6.
    Chemical Marketing Reporter,Schnell Publishing Co., New York (Oct. 1990).Google Scholar
  7. 7.
    Industrial Mineral Background Paper 2,“ Law, Sigurdson and Associates, Toronto, Ontario and SRI International, Menlo Park, CA.Google Scholar
  8. 8.
    Sconce, J., “Chlorine,” ACS Monograph No. 154, p. 180 (1962).Google Scholar
  9. 9.
    U.S. Patent 4,793,906.Google Scholar
  10. 10.
    Van Wazer, J. R., Phosphorous and Its Compounds, Interscience, New York, 1958.Google Scholar
  11. 11.
    U.S. Patent 1,385,595.Google Scholar
  12. 12.
    U.S. Patent 1,132,640.Google Scholar
  13. 13.
    German Patent 249,222.Google Scholar
  14. 14.
    Leddy, J. J., J. Chem. Ed., 57, 640 (1980).CrossRefGoogle Scholar
  15. 15.
    Chemical Week,p. 36 (Apr. 12, 1989).Google Scholar
  16. 16.
    Leddy, J. J., et al., Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley, New York, 1978.Google Scholar
  17. 17.
    Burney, H. S., and White, R. E., Dow Chemical Company, presented at AIChE Symposium: Tutorials in Electrochemical Engineering and Technology-IIIh, Sept. 1989.Google Scholar
  18. 18.
    Mantell, C. L., Electrochemical Engineering, 4th ed., McGraw-Hill, New York, 1960.Google Scholar
  19. 19.
    Kuhn, A., Industrial Electrochemical Processes, Elsevier Publishing Co., 1971.Google Scholar
  20. 20.
    U.S. Patent 3,718,627.Google Scholar
  21. 21.
    Grot, E. G., Chem.-Ing. Tech., 44, 167 (1972).CrossRefGoogle Scholar
  22. 22.
    Seko, M., New York A.C.S. Meeting, Apr. 1976.Google Scholar
  23. 23.
    Beer, H., Chem. Tech., 9, 150 (1979).Google Scholar
  24. 24.
    U.S. Patent 3,632,498.Google Scholar
  25. 25.
    German Patent 71937.Google Scholar
  26. 26.
    Latimer, W. M., Oxidation Potentials, Prentice-Hall, Englewood Cliffs, NJ, 1952.Google Scholar
  27. 27.
    Dotson, R. L., Chem. Eng., p. 106 (July 17, 1978 ).Google Scholar
  28. 28.
    Kapoor, R., and Martin, J. J., “Thermodynamic Properties of Chlorine,” Eng. Res. Inst., University of Michigan (1957).Google Scholar
  29. 29.
    Chem. Met. Eng.,51 119 (1944).Google Scholar
  30. 30.
    U.S. Patent 3,983,215.Google Scholar
  31. 31.
    Considine, D. M., Chem. Proc. Tech. Encyclopedia, p. 233 McGraw-Hill, New York, 1974.Google Scholar
  32. 32.
    White, G. C., Handbook of Chlorination, Van Nostrand Reinhold, New York, 1972.Google Scholar
  33. 33.
    Van Dyk, C. P., Chem. Eng. Progress, 69, 47 (1973).Google Scholar
  34. 34.
    U.S. Patent 3,635,804.Google Scholar
  35. 35.
    Grosselfinger, F. C., Chem. Eng. (Sept. 14, 1964 ).Google Scholar
  36. 36.
    U.S. Patent 3,242,065.Google Scholar
  37. 37.
    U.S. Patent 3,210,158.Google Scholar
  38. 38.
    U.S. Patent 3,989,807.Google Scholar
  39. 39.
    Newsletter for Dow’s Chlor-Alkali Business, Summer 1989.Google Scholar
  40. 40.
    Lyday, P. A., “Bromine,” in Minerals Yearbook 1987, Vol. 1, p. 172, Bureau of Mines, Washington, D.C.Google Scholar
  41. 41.
    U.S. Patent 4,719,096.Google Scholar
  42. 42.
    U.S. Patent 4,725,425.Google Scholar
  43. 43.
    Veziroglu, T. N., (Ed.), “Alternate Energy Sources,” Proc. Miami Int. Conf., 6th Meeting, 1983, Vol. 1, pp. 327–333, Hemisphere, Washington, DC.Google Scholar
  44. 44.
    Reeve, D. W., and Earl, P. F., Pulp and Paper Canada, 90, 4 (1989).Google Scholar
  45. 45.
    Fleming, B. I., et al., Pulp and Paper Canada, 89, 12 (1988).Google Scholar
  46. 46.
    Krauza, K. E., Canadian Pulp and Paper Association, Spring Meeting, 1989.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Indresh Mathur
    • 1
  1. 1.Dow Chemical Canada Inc.SarniaCanada

Personalised recommendations