Deflection of Particle Beams Using Planar Channeling

  • W. M. Gibson
Part of the NATO ASI Series book series (NSSB, volume 165)

Abstract

In 1976 Tsyganovl considered the motion of planar channeled particles in a crystal bent elastically in a direction perpendicular to the particle direction and to the channeling plane. This, he postulated, should introduce a centrifugal force to the particle motion equivalent to lowering one side of the continuum potential well and raising the other. This would cause the equilibrium planar trajectory to move away from the midpoint of the planar channel toward the plane on the convex side of the curved planar channel. Although such a shift would cause some of the channeled particles to become dechanneled, it was suggested that others would follow the curved trajectory through the crystal and that it might be possible in this way to deflect high-energy charged particles through much smaller radii than can be attained through achievable magnetic or electrostatic fields. The curvature at which no particles can remain channeled is reached when the equilibrium point of planar channeled motion is shifted to the position of the planar wall on the outside of the curve.

Keywords

Critical Angle Silicon Crystal Atomic Plane Planar Channel Drift Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. N. Tsyganov, Fermilab Internal Reports TM-682, TM-684 (1976).Google Scholar
  2. 2.
    J. A. Ellison and S. T. Picraux, Phys. Lett. 83A: 271 (1978).Google Scholar
  3. 3.
    J. A. Ellison, Nucl. Phys. B206: 205 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    H. Kudo, Nucl. Inst. and Meth. 189: 609 (1981).ADSCrossRefGoogle Scholar
  5. 5.
    V. V. Kaplan and S. A. Vorobiev, Phys. Lett. 67A:135 (1978); A. M. Taratin, Yu. M. Filimonov, E. G. Vyatkin, and S. A. Vorobiev, Phys. Stat. Solid (b) 100:273 (1980); A. M. Taratin, and S. A. Vorobiev, Phys. Stat. Solid. (b) 107: 521 (1981).CrossRefGoogle Scholar
  6. 6.
    A. F. Elishev, N. A. Filatova, V. M. Golovatyuk, I. M. Ivanchenko, R. B. Kadyrov, N. N. Karpenko, V. V. Korenkov, T. S. Nigmanov, V. D. Riabtsov, M. D. Shafranov, B. Sitar, A. E. Senner, B. M. sTarchenko, V. A. Sutulin, I. A. Tyapkin, E. N. Tsyganov, D. V. Uralsky, A. S. Vodopianov, A. Foryki, Z. guzik, J. Wojtkowka, R. Zelazny, I. A. Grishaev, G. D. Kovalenko, B. I. Shramneko, M. D. Bavizhev, N. K. Bulgakov, V. V. Aveichikov, R. A. Carrigan, T. E. Toohig, W. M. Gibson, I.-J. Kim, J. Phelps, and C.-R. Sun, Phys. Lett. 88B: 387 (1979).Google Scholar
  7. 7.
    J. Bak, G. Melchart, E. Uggerhoj, J. S. Forster, P. R. Jensen, H. Madsb¢ll, S. P. Moller, H. Nielsen, G. Petersen, H. Schiott, J. J Grob, and P. Siffert, Phys. Lett. 93B: 505 (1980).Google Scholar
  8. 8.
    W. M. Gibson, I.-J. Kim, M. Pisharody, S. M. Salman, C.-R. Sun, G. H. Wang, R. Wijayawardana, J. S. Forster, I. V. Mitchell, T. S. Nigmanov, E. N. Tsyganov, S. I. Baker, R. A. Carrigan, T. E. Toohig, V. V. Aveichikov, J. A. Ellison, and P. Siffert, Nucl. Inst. and Meth. B2: 54 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    S. I. Baker, R. A. Carrigan, C. Crawford, T. E. Toohig, W. M. Gibson, H. Jin, ‘I: J. Kim, M. Pisharody, S. Salman, C.-R. Sun, G. H. Wang, R. Wijayawardana, J. S. Forster, H. Hatton, I. V. Mitchell, Z. Guzik, T. S. Nigmanov, E. N. Tsyganov, V. V. Avdeichikov, J. A. Ellison, and P. Siffert, Phys. Lett. 137B: 129 (1984).Google Scholar
  10. 10.
    S. M. Salman, Thesis, University of Albany (1982).Google Scholar
  11. 11.
    S. Timoshenko and J. Goodier, “Theory of Elasticity,” 2nd ed., McGraw-Hill, New York (1951); S. Timoshenko and J. Gere, “Theory of Elastic Stability,” McGraw-Hill, New York (1961); M. M. Frocht, “Photo Elasticity, Vol. 2,” Wiley, New York, (1948), p. 104.Google Scholar
  12. 12.
    Y. H. Ohtsuki, “Charged Particle Interaction with Solids,” Taylor and Francis, New York (1983).Google Scholar
  13. 13.
    C.-R. Sun, W. M. Gibson, I.-J. Kim, G. H. Wang, N. K. Bulgakov, N. A. Filatova, A. Forycki, V. M. Golovatyak, Z. Guzik, R. B. Kadyrov, T. S. Nigmanov, V. D. Riabtsov, A. B. Sadovsky, M. d. Shafranov, I. A. Tyapkin, E. N. Tsyganov, A. S. Vodopianov, J. Wojtkowska, N. I. Zimin, R. A. Carrigan, T. E. Toohig, and M. D. Bavizhev, Nucl. Inst. and Meth. B2: 60 (1984).ADSCrossRefGoogle Scholar
  14. 14.
    G. H. Wang, P. J. Cong, W. M. Gibson, C.-R. Sun, I.-J. Kim, S. Salman, M. Pisharody, S. I. Baker, R. A. Carrigan, J. S. Forster, I. V. Mitchell, Nucl. Inst. and Meth. 218: 669 (1983).CrossRefGoogle Scholar
  15. 15.
    S. I. Baker, this volume.Google Scholar
  16. 16.
    R. A. Carrigan and W. M. Gibson, in: “Coherent Radiation Sources,” A. W. Sâenz and H. Überall, eds., Vol. 38 in Topics in Current Physics, Springer-Verlag, Berlin, Heidelberg (1985), p. 61.Google Scholar
  17. 17.
    R. A. Carrigan, this volume.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • W. M. Gibson
    • 1
  1. 1.Department of Physics and Institute for Particle-Solid Interactions (I-Y)State University of New York at AlbanyAlbanyUSA

Personalised recommendations