Advertisement

Multiple Scattering Effects of Light Relativistic Particles under Channeling Conditions

  • R. Wedell
Part of the NATO ASI Series book series (NSSB, volume 165)

Abstract

Multiple scattering influences the particle motion and the radiation characteristics in a twofold way. On the one hand, due to multiple scattering, the channeled particles leave the channeling regime and form a background bremsstrahlung moving in random directions. On the other hand, multiple scattering disturbs the coherent particle oscillations in the channel and leads to smearing the emission spectra. For a theoretical description, the Monte Carlo method seems to be the most suitable since it allows the consideration of the influence of different factors on channeling characteristics. S. D. Bloom et al. [1] have carried out such calculations for positrons in Si(110) in the range from 30 MeV to 100 MeV for different thermal vibration amplitudes. The strong dependence of multiple scattering on thermal vibrations is clearly seen. However, the sharpness and heights of the theoretical peaks are not reached in the experiment. This is also shown in the publication by O. Pedersen et al. [2] and in a recent paper by J. Bak et al. [3].

Keywords

Multiple Scattering Transverse Energy Small Depth Continuum Potential Multiple Scattering Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.D. Bloom, B.L. Berman, D.C. Hamilton, M.J. Alguard, J.H. Barrett, S. Datz, R.H. Pantell, R.L. Swent, Nucl. Instr. Meth. 194: 229 (1982).CrossRefGoogle Scholar
  2. 2.
    O. Pedersen, E. Bonderup, F. Golovchenko, Nucl. Inst. Meth. B2: 83 (1984).ADSCrossRefGoogle Scholar
  3. 3.
    J. Bak, J.A. Ellison, B. Marsh, F.E. Meyer, O. Pedersen, F.B. Petersen, E. Uggerhoj, K. Ostergaard, S.P. Moller, A.H. Sorensen, M. Suffert, Ned. Phys. B254: 491 (1985).ADSGoogle Scholar
  4. 4.
    L.D. Landau, E.M. Lifshitz, “Lehrbuch der theoretischen Physik Bd. II,” Klassische Feldtheorie, Academie-Verlag, Berlin (1981) S249.Google Scholar
  5. 5.
    S. Chandrasekar, Stochastic Problems in Physics and Astronomy, in: “Selected Papers on Noise and Stochastic Processes,” N. Wax, ed., Dover Publications, New York (1954).Google Scholar
  6. 6.
    N.I. Zimin, R. Wedell, O. Greschner, Phys. Stat. Sol. (b) 105: 257 (1981).ADSCrossRefGoogle Scholar
  7. 7.
    R. Wedell, M.A. Kumakhov, Dokl. Akad. Nauk SSSR 230: 69 (1976).Google Scholar
  8. 8.
    M.A. Kumakhov, R. Wedell, Rad. Eff. 30: 1 (1976).CrossRefGoogle Scholar
  9. 9.
    N.N. Bogoliubov, Y. A. Mitropolsky, “Asymptotic Methods in the Theory of Nonlinear Oscillations,” Gordon and Breach, New York (1961).Google Scholar
  10. 10.
    A.G. Bonch-Osmolovskii, M.I. Podgoretskii, Preprint P2–11634, Joint Institute Nucl. Phys. Dubna (1978).Google Scholar
  11. 11.
    A.G. Bonch-Osmolovskii, M.I. Podgoretskii, Preprint P2–11634, Joint Institute Nucl. Phys. Dubna (1978).Google Scholar
  12. 12.
    M.A. Kumakhov, R. Wedell, Phys. Stat. Sol. (b) 92: 65 (1979).ADSCrossRefGoogle Scholar
  13. 13.
    R. Wedell, Ann. d. Phys. 43, 11. 1 (1986).Google Scholar
  14. 14.
    R. Wedell, Thesis, Moscow 1976 (in Russian).Google Scholar
  15. 15.
    R. Wedell Phys. Stat. Sol. (b) 87:491, (1978). Google Scholar
  16. 16.
    V.V. Beloshitsky, M.A. Kumakhov, V.A. Muralev, Rad. Eff. 20: 95 (1973).CrossRefGoogle Scholar
  17. 17.
    V.V. Beloshitsky, F.F. Komarov Phys. Rep.93:117 (1982).Google Scholar
  18. 18.
    V.V. Beloshitsky, Ch. Trikalinos, Rad. Eff. 56: 71 (1981).CrossRefGoogle Scholar
  19. 19.
    M.A. Kumakhov, F.F. Komarov, “Radiation of charged particles in solids” (in Russian), Minsk lzd-vo, Universitetskoje (1985).Google Scholar
  20. 20.
    V.A. Bazylev, V.V. Beloshitsky, V.I. Glebov, N.K. Zhevago, M.A. Kumakhov, Ch. Trikalinos, Zh. Eksp. Teor. Fiz. 80:608 (1981) or Rad. Eff. 56: 87 (1981).CrossRefGoogle Scholar
  21. 21.
    V.V. Beloshitsky, Yu. A. Bykovsky, M.H. Kumekhov, Rad. Eff. Letts. 76: 93 (1983).CrossRefGoogle Scholar
  22. 22.
    A. R. Avakian, V.V. Beloshitsky, M.A. Kumakhov, Preprint of the Yerevan Physics Institute EFI-787(19) (1985).Google Scholar
  23. 23.
    R.O. Avakian et al., Pisma v. Zh. Eksp. Teor. Fiz. (1986) (to be published).Google Scholar
  24. 24.
    V.V. Beloshitsky, M.A. Kumakhov, Rad. Eff. Letts. 58: 41, (1981).CrossRefGoogle Scholar
  25. 25.
    M.Kh. Khokonov, V.I. Telegin, Rad. Eff. Letts. 76: 179 (1983).CrossRefGoogle Scholar
  26. 26.
    M.Kh. Khokonov, F.F. Komarov, V.I. Telegin, Rad. Eff. 81: 179 (1984).CrossRefGoogle Scholar
  27. 27.
    M. A. Kumakhov, V.A. Muralev, Rad. Eff. Letts. 85: 151 (1985).ADSCrossRefGoogle Scholar
  28. 28.
    M.Kh. Khokonov, F.F. Komarov, V.I. Telegin, Rad. Eff. 81: 203 (1984).CrossRefGoogle Scholar
  29. 29.
    V.A. Muralev Nucl. Instr. Methods in Phys. Res. B2:51 (1984). Google Scholar
  30. 30.
    D.I. Adejshvili, G.L. Bochek, V.I. Vit’ko, G.D. Kovalenko, B.I. Shramenko, Rad. Eff. Letts. 87: 135 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • R. Wedell
    • 1
  1. 1.Sektion PhysikHumboldt-Universität Zu BerlinGerman Democratic Republic

Personalised recommendations