Channeled Particle Acceleration by Plasma Waves in Metals

  • P. Chen
  • R. J. Noble
Part of the NATO ASI Series book series (NSSB, volume 165)


Presently existing high-energy particle accelerators are limited to acceleration gradients of order 10 MV/meter. This implies that to achieve ultrahigh energies exceeding several TeV would require great distances. In recent years there has been an increased interest in the high-gradient linear acceleration of changed particles.1, 2 One concept which promises very high gradients is the plasma accelerator.3 In this scheme longitudinal plasma oscillations with phase velocities near the speed of light provide large electric fields which are intended to accelerate particles to high energy over a short distance.


Plasma Wave Beam Emittance Emittance Growth Plasma Accelerator Plasmon Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Laser Acceleration of Particles,“ P. J. Channel, ed., A.I.P. Conf. Proc. No. 91, New York, (1982).Google Scholar
  2. 2.
    Laser Acceleration of Particles,“ C. Joshi and T. Katsouleas, eds., A.I.P. Conf. Proc. No. 130, New York (1985).Google Scholar
  3. 3.
    T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43: 267 (1979).ADSCrossRefGoogle Scholar
  4. 4.
    C. J. Powell and J. B. Swan, Phys. Rev. 115:869 ( 1959 ); N. H. March and M. Parrinello, “Collective Effects in Solids and Liquids,” Adam Higler Ltd., Bristol (1982).Google Scholar
  5. 5.
    P. C. Gibbons et al., Phys. Rev. B13:2451 (1976); P. C. Gibbons, Phys. Rev. B23: 2356 (1981).Google Scholar
  6. 6.
    D. S. Gemmel, Rev. Mod. Phys. 46:129 ( 1974 ); Y.-H. Ohtsuki, “Charged Beam Interactions with Solids,” Taylor and Francis, New York (1983).Google Scholar
  7. 7.
    The condition for classical motion is that the transverse de Broglie wavelength h/p0,where ti) is the incident angle to a row or plane, be much less than the typical atomic screening length 0.1 A) where single atomic collisions become important. At this critical distance the channeling potential energy VGoogle Scholar
  8. 8.
    E. Bonderup et al., Rad. Eff. 12: 261 (1972).CrossRefGoogle Scholar
  9. 9.
    The collisional energy loss for relativistic particles in solids is typically (dE/dE),= 1–10 zee MV/cm. We assume the acceleration gradient G satisfies zeG » (dE/de) c Google Scholar
  10. 10.
    R. A. Carrigan et al., Nucl. Instr. Meth. 194: 205 (1982).CrossRefGoogle Scholar
  11. 11.
    P. Chen and R. J. Noble, A.I.P. Conf. Proc. “Symposium on Advanced Accelerator Concepts,” D. Cline and F. Mills, eds., Madison (August 1986).Google Scholar
  12. 12.
    B. W. Montague and W. Schnell, Ref. 2, p. 146.Google Scholar
  13. 13.
    M. A. Kumakhov, Phys. Lett. D57:17 (1976); Phys. Stat. Sol. B84:41 (1977); V. V. Beloshitsky and F. F. Komarov, Phys. Rept. 93: 117 (1982).ADSCrossRefGoogle Scholar
  14. 14.
    This analysis neglects radiative cooling of the emittance which can act against the effect of multiple scattering.Google Scholar
  15. 15.
    J. J. Quinn, Phys. Rev. 126:1453 (1962); L. Hedin and S. Lundqvist, in: “Solid State Physics,” F. Seita, D. Turnball and H. Ehrenreich, eds., Academic, New York (1969), Vol. 23.Google Scholar
  16. 16.
    This is the fracture threshold due to thermal shock. For times less than the characteristic time for acoustic waves (va, 106 cm/sec) to remove energy from a given volume, metals have a dynamic tensile strength of several kilobars. The change in pressure P per unit energy U at constant volume V is V (dP/dU)y - 10-2 kilobar/J/cm3 in metals.Google Scholar
  17. 17.
    T. Tajima and J. M. Dawson, IEEE Trans. Nucl. Sci. NS-28: 3416 (1981).Google Scholar
  18. 18.
    T. Katsouleas et al., IEEE Trans. Nucl. Sci. NS-32: 3554 (1985).Google Scholar
  19. 19.
    P. Chen et al., Phys. Rev. Lett. 54: 693 (1985).ADSCrossRefGoogle Scholar
  20. 20.
    K.L.F. Bane, P. Chen, and P. B. Wilson, IEEE Trans. Neel. Sci. NS-32: 3524 (1985).Google Scholar
  21. 21.
    A. Kanofsky, Rev. Sci. Inst. 48: 34 (1977).ADSCrossRefGoogle Scholar
  22. 22.
    I. A. Grishaev and N. N. Nasonov, Pis’ma Zh. Tekh. Fiz. 3:1084 (1977); Soy. Techn. Phys. Lett. 3: 446 (1977).Google Scholar
  23. 23.
    A. F. Pisarev, Zh. Tekh. Fiz. 49:786 (1979); Soy. Phys. Tech. Phys. 24: 456 (1979).Google Scholar
  24. 24.
    V. V. Beloshitskii and M. A. Kumakhov, Dokl. Akad. Nauk SSSR 249:100 (1979); Soy. Phys. Dokl. 24: 916 (1979).ADSGoogle Scholar
  25. 25.
    N. N. Nasonov, Pis’ma Zh. Tekh. Fiz. 6:499 (1980); Soy. Tech. Phys. Lett. 6: 214 (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • P. Chen
    • 1
  • R. J. Noble
    • 2
  1. 1.Stanford Linear Accelerator CenterStanfordUSA
  2. 2.Fermi National Accelerator LaboratoryBataviaUSA

Personalised recommendations