Advertisement

Coherent Bremsstrahlung and Free-Bound Transitions

  • A. W. Sáenz
  • A. Nagl
  • H. Überall
Part of the NATO ASI Series book series (NSSB, volume 165)

Abstract

Coherent bremsstrahlung—the radiation which is emitted by electrons while crossing a succession of crystal planes, and channeling radiation—emitted while the electrons propagate along a crystal plane or axis in an oscillatory fashion—represent two aspects of the same radiation phenomenon. Examples of recent research on these phenomena are given. The intermediate process involving free-bound transitions is studied here regarding its kinematics, radiation intensity, and polarization.

Keywords

Incident Electron Naval Research Laboratory Incident Electron Beam Channel Radiation Umklapp Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, e.g., W. Heitler, “The Quantum Theory of Radiation,” 3rd, Clarendon, Oxford (1954).Google Scholar
  2. 2.
    See, e.g., A. W. Saenz and H. Überall, Theory of Coherent Bremsstrahlung, in: “Coherent Radiation Sources,” A. W. Sâenz and H. Überall, Topics in Current Physics, vol. 38, Springer, Berlin-Heidelberg (1985).Google Scholar
  3. 3.
    B. Ferretti, Nuovo Cimento 7: 118 (1950).CrossRefGoogle Scholar
  4. 4.
    L. Landau and I. Pomeranchuk, Dokl. Akad. Nauk SSSR 92: 535, 735 (1953).zbMATHGoogle Scholar
  5. 5.
    M. L. Ter-Mikaelyan, Zh. Eksp. Teor. Fiz. 25: 296 (1953).Google Scholar
  6. 6.
    H. Überall, Phys. Rev. 103: 1055 (1956).ADSCrossRefGoogle Scholar
  7. 7.
    See also A. W. Sâenz and H. Überall, Phys. Rev. B25: 4418 (1982).CrossRefGoogle Scholar
  8. 8.
    See, e.g., G. D. Kovalenko, L. Ya. Kolesnikov, and A. L. Rubashkin, Coherent Bremsstrahlung Experiment, in: “Coherent Radiation Sources,” A. W. Sâenz and H. Überall, Topics in Current Physics, vol. 38, Springer, Berlin-Heidelberg (1985).Google Scholar
  9. 9.
    G. Bologna, G. Diambrini, and G. P. Murtas, Phys. Rev. Lett. 4: 134, 572 (1960).ADSCrossRefGoogle Scholar
  10. 10.
    H. Überall, Z. Naturforsch. 71a: 332 (1962).Google Scholar
  11. 11.
    J. Lindhard, K. Dan. Videnak. Selsk. Mat. Fys. Medd. 34 (14) (1965).Google Scholar
  12. 12.
    M. A. Kumakhov, Phys. Lett. 57A: 17 (1976).CrossRefGoogle Scholar
  13. 13.
    A. A. Vorobiev, V. V. Kaplin, and S. A. Vorobiev, Nucl. Inst. Meth. 127: 265 (1977).ADSCrossRefGoogle Scholar
  14. 14.
    R. Wedell, Phys. Stat. Sol. (b)99:11 (1980); Rad. Eff. 52: 95 (1980).CrossRefGoogle Scholar
  15. 15.
    J. U. Andersen, Nucl. Inst. Meth. 170: 1 (1980).ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    J. U. Andersen, E. Bonderup, E. Laegsgaard, B. E. Marsh, and A. H. Sorensen, Nucl. Inst. Meth. 194: 209 (1982).ADSCrossRefGoogle Scholar
  17. 17.
    G. M. Reese, J.C.H. Spence, and N. Yamamoto, Phil. Mag. A 49: 697 (1984).CrossRefGoogle Scholar
  18. 18.
    G. Kurizki and J. K. McIver, Phys. Rev. B 32: 4358 (1985).ADSCrossRefGoogle Scholar
  19. 19.
    G. Kurizki, Phys. Rev. B, to be published.Google Scholar
  20. 20.
    A. W. Sâenz, A. Nagl, and H. Überall, Nucl. Inst. Meth. B (1986), in press.Google Scholar
  21. 21.
    A. W. Sâenz, H. Überall, and A. Nagl, Nucl. Phys. A 372: 90 (1981).ADSCrossRefGoogle Scholar
  22. 22.
    R. F. Mozley and J. DeWire, Nuovo Cimento 27: 1281 (1963).CrossRefGoogle Scholar
  23. 23.
    A. P. Komar, Ya. S. Korobochko, V. I. Mineev, and A. F. Petrochenko, Zh. Tekh. Fiz. 41:807 (1971) [English transi.: Soy. Phys. Tech. Phys. 16:631 (1971)].Google Scholar
  24. 24.
    H. Bilokon et al., Nucl. Inst. Meth. 204: 299 (1983).CrossRefGoogle Scholar
  25. 25.
    M. J. Tannenbaum, 1980 Symposium on High Energy Physics with Polarized Beams and Polarized Targets, Lausanne, Switzerland, September 1980 (BNL report 28586).Google Scholar
  26. 26.
    M. J. Tannenbaum, SSC Fixed Target Workshop, The Woodlands, Texas, January 1984 (BNL report 34614).Google Scholar
  27. 27.
    R. L. Walker, B. L. Berman, R. C. Der, T. M. Kavanaugh, and J. M. Khan, Phys. Rev. Lett. 25:5 (1970); R. L. Walker, B. L. Berman, and S. D. Bloom, Phys. Rev. A11: 736 (1975).CrossRefGoogle Scholar
  28. 28.
    T. F. Godlove and M. E. Toms, U.S. Naval Research Laboratory, Nuclear Physics Division Annual Report (1969), p. 96.Google Scholar
  29. 29.
    R. W. Terhune and R. H. Pantell, Appl. Phys. Lett. 30: 265 (1977).ADSCrossRefGoogle Scholar
  30. 30.
    B. L. Berman, et al., Phys. Lett. 82A: 459 (1981).CrossRefGoogle Scholar
  31. 31.
    H. A. Tolhoek, Rev. Mod. Phys. 28: 277 (1956).ADSzbMATHCrossRefGoogle Scholar
  32. 32.
    Frisch, Acta Physica Austriaca 12: 331 (1959).Google Scholar
  33. 33.
    See, e.g., M. A. Kumakhov and R. Wedell, Phys. Stat. Sol. (b)84: 581 (1977).Google Scholar
  34. 34.
    A. 0. Agan’yants, Pis’ma Zh. Eksp. Teor. Fiz. 29:554 (1979) [English transl.: JETP Lett. 29:505 (1979)].Google Scholar
  35. 35.
    R. Wedell, Phys. Stat. Sol. (b)99: 11 (1980).Google Scholar
  36. 36.
    H. Winick and S. Doniach (eds.), “Synchrotron Radiation Research,” Plenum, New York (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • A. W. Sáenz
    • 1
    • 2
  • A. Nagl
    • 1
    • 2
  • H. Überall
    • 1
    • 2
  1. 1.Naval Research LaboratoryUSA
  2. 2.Catholic University of AmericaUSA

Personalised recommendations