Rehabilitation pp 155-168 | Cite as

Assessment of External Prostheses

  • Jacquelin Perry
  • Edmond Ayyappa
Part of the Human Brain Function book series (HBFA)


Prostheses are designed to replace lost function. Historically, this term represented artificial limbs, which overcome the limitations of amputation. Today, these devices are classed as external prostheses because technical advances during the most recent decades have led to internal prostheses, which replace joints and bone segments within the limb. In this review of external prostheses, attention is focused on the management of the lower-limb amputee as the incidence is eleven times greater than the equivalent upper-extremity surgery. Following a historical review, current scientific and clinical practices are illustrated by summarizing the analysis and management of the below-knee amputee.


Knee Flexion Gait Analysis Residual Limb Limb Prosthetic Artificial Limb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, B. J., and Jarrett, M. O. (1976). On-line kinematic data acquisition. Glasgow, Scotland: University of Strathclyde.Google Scholar
  2. Ayyappa, E. (1994). Prosthetic desk reference: Prosthetic program manual. Dominguez Hills, CA: California State University-Dominguez Hills.Google Scholar
  3. Barth, D. G., Schumacher, L., and Sienko Thomas, S. (1992). Gait analysis and energy cost of belowknee amputees wearing six different prosthetic feet. Journal of Prosthetics and Orthotics, 4 (2), 63–75.Google Scholar
  4. Basmajian, J. V., and Deluca, C. J. (1985). Muscles alive: Their functions revealed by electromyography. Baltimore: Williams and Wilkins.Google Scholar
  5. Basmajian, J. V., and Stecko, G. A. (1962). A new bipolar indwelling electrode for electromyography. Journal of Applied Physiology, 17, 849.Google Scholar
  6. Braune, W., and Fischer, O. (1985). On the centre of gravity of the human body as related to the equipment of the German infantry soldier. Berlin, Germany: Springer-Verlag.Google Scholar
  7. Breakey, J. W. (1973). Criteria for use of supracondylar and supracondylar-suprapatellar suspension for below-knee prostheses. Orthotics and Prosthetics, 27, 14–18.Google Scholar
  8. Bresler, B., and Berry, F. R. (1950). Energy characteristics of normal and prosthetic ankle joints. (Prosthetic Devices Research Project, National Research Council, Series 11 [22]). Berkeley: University of California Institute of Engineering Research.Google Scholar
  9. Bresler, B., and Berry, F. R. (1953). Energy and power in the leg during normal level walking. (Prosthetic Devices Research Project, National Research Council). Berkeley: University of California.Google Scholar
  10. Burgess, E. M., Hittenberger, D. A., Forsgren, S. M., and Lindh, D. V. (1983). The Seattle prosthetic foot-a design for active sports: Preliminary studies. Orthotics and Prosthetics, 37 (1), 25–31.Google Scholar
  11. Culham, E. G., Peat, M., and Newell, E. (1986). Below-knee amputation: A comparison of the effect of the SACH foot and single axis foot on electromyographic patterns during locomotion. Prosthetics Orthotics International, 10, 15–22.Google Scholar
  12. Czerniecki, J. M., Gitter, A., and Munro, C. F. (1987). Muscular power output characteristics of amputee running gait. Archives of Physical Medicine and Rehabilitation, 68, 637.Google Scholar
  13. Doane, N. E., and Holt, L. E. (1983). A comparison of the SACH and single axis foot in the gait of unilateral below-knee amputees. Prosthetics and Orthotics International, Z 33–36.Google Scholar
  14. Eberhart, H., Elftman, H., and Inman, V. (1968). The locomotor mechanism of the amputee. In P. Klop- steg and P. Wilson (Eds.), Human limbs and their substitutes (pp. 472–480 ). New York: Hafner.Google Scholar
  15. Eberhart, H. D. (1947). Prosthetic device research project. Subcontractor’s report on fundamental studies on human locomotion and other information related to the design of artificial limbs (Contract No. VAm 21223 ). Washington, DC: National Research Council, Committee on Artificial Limbs.Google Scholar
  16. Eberhart, H. D., Inman, V. T., and Bressler, B. (1968). The principal elements in human locomotion. In P. E. Klopsteg and P. D. Wilson (Eds.), Human limbs and their substitutes (pp. 437–471 ). New York: Hafner.Google Scholar
  17. Elftman, H. (1934). A cinematic study of the distribution of pressure in the human foot. The Anatomical Record, 59(4), 481–491.Google Scholar
  18. Elftman, H. (1938). The measurement of the external force in walking. Science, 88, 152–153.PubMedCrossRefGoogle Scholar
  19. Foort, J. (1970). The patellar-tendon-bearing prosthesis for below-knee amputees: A critical review of technique and criteria. In Committee on Prosthetic Research and Development, Selected articles from Artificial Limbs (1/54–2/66) (pp. 353–362 ). Huntington, NY: Krieger.Google Scholar
  20. Gillis, L. (1954). Amputations. New York: Grune and Stratton.Google Scholar
  21. Gitter, A., Czerniecki, J. M., and DeGroot, D. M. (1991). Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking. American Journal of Physical Medicine and Rehabilitation, 70, 142–148.PubMedCrossRefGoogle Scholar
  22. Goh, J. C. H., Solomonidis, S. E., Spence, W. D., and Paul, J. P. (1984). Biomechanical evaluation of SACH and uniaxial feet. Prosthetics and Orthotics International, 8, 147–154.PubMedGoogle Scholar
  23. Hamontree, S., and Snelson, R. (1973). The use of check sockets in lower limb prosthetics. Orthotics and Prosthetics, 27, 30–33.Google Scholar
  24. Hannah, R. E., and Morrison, J. B. (1984). Prostheses alignment: Effect on gait of persons with below-knee amputations. Archives of Physical Medicine and Rehabilitation, 65, 159–162.PubMedGoogle Scholar
  25. Hubbard, A. W., and Stetson, R. H. (1938). An experimental analysis of human locomotion. American Journal of Physiology, 124, 300–314.Google Scholar
  26. Inman, V. T., Ralston, H. J., and Todd, F. (1981). Human walking. Baltimore: Williams and Wilkins. Karpovich, R V., and Karpovich, G. P. (1959). Electrogoniometer: A new device for study of joints in action. Federation Proceedings, 18, 79.Google Scholar
  27. Kettelkamp, D. B., Johnson, R. J., Smidt, G. L., Chao, E. Y., and Walker, M. (1970). An electrogoniometric study of knee motion in normal gait. Journal of Bone and Joint Surgery, 52A, 775–790.PubMedGoogle Scholar
  28. Knapp, S., and Cummings, D. (1992). Prosthetic management. In J. H. Bowker and J. W. Michael (Eds.), Atlas of limb prosthetics (pp. 453–478 ). St. Louis, MO: Mosby Year Book.Google Scholar
  29. Lamoreux, L. (1981). Exoskeleton goniometry. Bulletin of Prosthetics Research 18(1), 288–290.Google Scholar
  30. Lehneis, H. R. (1984). Evolution of the AK socket. Clinical Prosthetics and Orthotics, 8, 11.Google Scholar
  31. Lehneis, H. R. (1985). Beyond the quadrilateral. Clinical Prosthetics and Orthotics, 10, 6–8.Google Scholar
  32. Lehneis, H. R., Chu, D. S., and Adelglass, H. (1984). Flexible prosthetic socket techniques. Clinical Prosthetics and Orthotics, 8, 6–8.Google Scholar
  33. Levy, S. W. (1970). The skin problems of the lower extremity amputee. In Committee on Prosthetic Research and Development; Selected articles from Artificial Limbs (1/54–2/66). Huntington, NY: Krieger.Google Scholar
  34. Long, I. A. (1975). Allowing normal adduction of the femur in above knee amputations. Orthotics and Prosthetics, 29, 53–54.Google Scholar
  35. Long, 1. A. (1985). Normal shape-normal alignment (NSNA) above-knee prosthesis. Clinical Prosthetics and Orthotics, 10, 9–14.Google Scholar
  36. Marks, A. A. (1931). Manual of artificial limbs. New York: Author.Google Scholar
  37. Marks, G. E. (1888). A treatise on artificial limbs with rubber hands and feet. New York: A. A. Marks.Google Scholar
  38. Michael, J. (1987). Energy storing feet: A clinical comparison. Clinical Prosthetics and Orthotics, 11, 154–168.Google Scholar
  39. Murray, M. P. (1967). Gait as a total pattern of movement. American Journal of Physical Medicine, 46, 290–332.PubMedGoogle Scholar
  40. Murray, M. P., Drought, A. B., and Kory, R. C. (1964). Walking patterns of normal men. Journal of Bone and Joint Surgery, 46A, 335–360.PubMedGoogle Scholar
  41. Murray, M. P., Sepic, S. B., Gardner, G. M., and Mollinger, L. A. (1980). Gait patterns of above-knee amputees using constant-friction knee components. Bulletin of Prosthetics Research, 17, 35–46.Google Scholar
  42. Muybridge, E. (1979). Muybridge’s complete human and animal locomotion. New York: Dover.Google Scholar
  43. Patek, S. D. (1926). The angle of gait in women. American Journal of Anthropology, 9, 273–291.CrossRefGoogle Scholar
  44. Peltier, L. F. (1993). Orthopedics: A history and iconography. San Francisco: Norman.Google Scholar
  45. Perry, J. (1992). Gait analysis, normal and pathological function. Thorofare, NJ: Slack.Google Scholar
  46. Perry, J., Bontrager, E. L., Bogey, R. A., Gronley, J. K., and Barnes, L. A. (1993). The Rancho EMG Analyzer: A computerized system for gait analysis. Journal of Biomedical Engineering, 15, 487–496.PubMedCrossRefGoogle Scholar
  47. Powers, C. M., Torburn, L., Perry, J., and Ayyappa, E. (1994). Influence of prosthetic foot design on sound limb loading in adults with unilateral below-knee amputations. Archives of Physical Medicine and Rehabilitation, 75, 825–829.PubMedGoogle Scholar
  48. Quigley, M. J. (1985). The role of test socket procedures in today’s prosthetic practice. Clinical Prosthetics and Orthotics, 10, 11–12.Google Scholar
  49. Quigley, M. J., and Wilson, A. B. (1975). An evaluation of three casting techniques for patellar tendon bearing prostheses. Orthotics and Prosthetics, 29, 21–32.Google Scholar
  50. Radcliffe, C. W. (1970a). The biomechanics of below-knee prostheses in normal bipedal walking. In Committee on Prosthetic Research and Development, Selected articles from Artificial Limbs (1/54–2/66) (pp. 295–303 ). Huntington, NY: Krieger.Google Scholar
  51. Radcliffe, C. W. (1970b). The biomechanics of the Syme prosthesis. In Committee on Prosthetic Research and Development. Selected articles from Artificial Limbs (1/54–2/66) (pp. 273–282 ). Huntington, NY: Krieger.Google Scholar
  52. Radcliffe, C. W. (1970c). Functional considerations in the fitting of above knee prostheses. In Committee on Prosthetic Research and Development, Selected articles from Artificial Limbs (1/54–2/66) (pp. 5–30 ). Huntington, NY: Krieger.Google Scholar
  53. Radcliffe, C. W., and Foort, J. (1961). The patellar tendon bearing below knee prosthesis. Berkeley: University of California Biomechanics Laboratory.Google Scholar
  54. Sabolich, J. (1985). Contoured adducted trochanteric-controlled alignment method (CAI’-CAM): Introduction and basic principles. Clinical Prosthetics and Orthotics, 9 (4), 15–26.Google Scholar
  55. Sanders, G. T. (1986). Lower limb amputations: A guide to rehabilitation. Philadelphia: Davis. Schwartz, R. P. (1934). Kinetics of human gait. Journal of Bone and Joint Surgery, 16, 334–350.Google Scholar
  56. Schwartz, R. P., Trautmann, O., and Heath, A. L. (1936). Gait and muscle function recorded by the electrobasograph. Journal of Bone and Joint Surgery, 18(2), 445–454.Google Scholar
  57. Shurr, D. G. and Cook, T. M. (1990). Prosthetics and orthotics. Norwalk, CT: Appleton Lange.Google Scholar
  58. Staros, A., and Goralnik, B. (1981). Lower limb prosthetic systems. In American Academy of Orthopaedic Surgeons (Ed.), Atlas of limb prosthetics (pp. 279–280). St. Louis, MO: Mosby.Google Scholar
  59. Steindler, A. (1953). Historic review of the studies and investigations made in relation to human gait. Journal of Bone and Joint Surgery, 35A, 540–542.PubMedGoogle Scholar
  60. Strong, F. S. (1970). Artificial limbs-today and tomorrow. In Committee on Prosthetic Research and Development, Selected Articles from Artificial Limbs (1/54–2/66) (pp. 1–2 ). Huntington, NY: Krieger.Google Scholar
  61. Sutherland, D. H., and Hagy, J. L. (1972). Measurement of gait movements from motion picture film. Journal of Bone and Joint Surgery, 54A, 787–797.PubMedGoogle Scholar
  62. Tipton, C. M., and Karpovich, P. V. (1965). Electrogoniometric records of knee and ankle movements in pathologic gaits. Archives of Physical Medicine and Rehabilitation, 46, 267–272.PubMedGoogle Scholar
  63. Torburn, L., Perry, J., Ayyappa, E., and Shanfield, S. L. (1990). Below knee amputee gait with dynamic elastic response prosthetic feet: A pilot study. Journal of Rehabilitation Research and Development, 27 (4), 369–384.PubMedCrossRefGoogle Scholar
  64. Vitali, M., Robinson, K. P., Andrews, B. G., and Harris, E. E. (1978). Amputations and prostheses. London: Bailliere Tindall.Google Scholar
  65. Wagner, E. M., and Catranis, J. G. (1968). New developments in lower-extremity prostheses. In P. E. Klopsteg and P. D. Wilson (Eds.), Human limbs and their substitutes (pp. 481–616 ). New York: Hafner.Google Scholar
  66. Wagner, J., Sienko, S., Supan, T., and Barth, D. (1987). Motion analysis of SACH vs. Flex-Foot in moderately active below-knee amputees. Clinical Prosthetics and Orthotics, 11, 55–62.Google Scholar
  67. Waters, R. L., Perry, J., Antonelli, D., and Hislop, H. (1976). Energy cost of walking of amputees: The influence of level of amputation. Journal of Bone and Joint Surgery, 58A, 42–46.PubMedGoogle Scholar
  68. Weber, E. F. (1851). Ueber die Langenverhaltnisse der Fleischfasern der Muskeln im Allgemeinen. Berichte uber die Verhandlung der Koniglich Sachsischen Gesellschact der Wissenschaften zu Leipzig, mathematisch-physische classe. Jahrgang 1849. Leipzig, Weidmansche Buchhandling, Sitzung Am 16, August 1851.Google Scholar
  69. Wilson, A. B. (1969). Recent advances in below-knee prosthetics. Artificial Limbs, 13, 1–12.PubMedGoogle Scholar
  70. Wilson, A. B. (1970). The prosthetic and orthotic programs. Artificial Limbs, 14, 1–18.Google Scholar
  71. Wilson, A. B. (1992). History of amputation surgery and prosthetics. In J. H. Bowker and J. W. Michael (Eds.), Atlas of limb prosthetics: Surgical, prosthetic and rehabilitation principles (pp. 3–15 ). St. Louis, MO: Mosby Year Book.Google Scholar
  72. Winter, D. A. (1983). Energy generation and absorption at the ankle and knee during fast, natural, and slow cadences. Clinical Orthopaedics and Related Research, 175, 147–154.PubMedGoogle Scholar
  73. Woltring, H. J., and Marsolais, E. B. (1980). Optoelectric (Selspot) gait measurement in two-and threedimensional space: A preliminary report. Bulletin of Prosthetics Research, 17, 46–52.Google Scholar
  74. Zahedi, M. S., Spence, W. D., Solomonidis, S. E., and Paul, J. P. (1986). Alignment of lower-limb prostheses. Journal of Rehabilitation Research Development, 23, 2–19.Google Scholar
  75. Zuniga, E. N., Leavitt, L. A., Calvert, J. C., Canzonari, J., and Peterson, C. R. (1972). Gait patterns in above-knee amputees. Archives of Physical Medicine and Rehabilitation, 53, 373–381.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Jacquelin Perry
    • 1
  • Edmond Ayyappa
    • 2
  1. 1.PathokinesiologyRancho Los Amigos Medical CenterDowneyUSA
  2. 2.Veterans Affairs Medical CenterLong BeachUSA

Personalised recommendations