Skip to main content

On the Local Super-Linear Convergence of a Matrix Secant Implementation of the Variable Metric Proximal Point Algorithm for Monotone Operators

  • Chapter
Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods

Part of the book series: Applied Optimization ((APOP,volume 22))

Abstract

Interest in the variable metric proximal point algorithm (VMPPA) is fueled by the desire to accelerate the local convergence of the proximal point algorithm without requiring the divergence of the proximation parameters. In this paper, the local convergence theory for matrix secant versions of the VMPPA is applied to a known globally convergent version of the algorithm. It is shown under appropriate hypotheses that the resulting algorithms are locally super-linearly convergent when executed with the BFGS and the Broyden matrix secant updates. This result unifies previous work on the global and local convergence theory for this class of algorithms. It is the first result applicable to general monotone operators showing that a globally convergent VMPPA with bounded proximation parameters can be accelerated using matrix secant techniques. This result clears the way for the direct application of these methods to constrained and non-finite-valued convex programming. Numerical experiments are included illustrating the potential gains of the method and issues for further study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.F. Bonnans, J.C. Gilbert, C. Lemaréchal, and C. Sagastizâbal. A family of variable metric proximal point methods. Mathematical Programming, 68: 15–47, 1995.

    MathSciNet  MATH  Google Scholar 

  2. M. A. Branch and A. Grace. Optimization Toolbox. The Math Works, Inc., Natick, MA (1996).

    Google Scholar 

  3. J.V. Burke and M. Qian. On the super-linear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating. Submitted to Mathematical Programming, August 1996.

    Google Scholar 

  4. J.V. Burke and M. Qian. A variable metric proximal point algorithm for monotone operators. To appear in SIAM J. Control and Optimization,1998.

    Google Scholar 

  5. P.H. Calamai, L.N. Vicente, and J.J. Judice. A new technique for generating quadratic programming test problems. Mathematical Programming, 61: 215–231, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  6. X. Chen and M. Fukushima. Proximal quasi-Newton methods for nondifferentiable convex optimization. Technical Report AMR 95/32, Dept. of Applied Math., University of New South Wales, Sydney, Australia, 1995.

    Google Scholar 

  7. M. Fukushima and L. Qi. A globally and superlinearly convergent algorithm for nonsmooth convex minimization. SIAM J. Optim., 30: 1106 1120, 1996.

    Google Scholar 

  8. W. Hock. Test Examples for Nonlinear Programming Codes. Springer-Verlag, New York, 1981

    Book  MATH  Google Scholar 

  9. C. Lemaréchal and C. Sagastizâbal. An approach to variable metric bundle methods. In J. Henry and J.P. Yuan, editors, IFIP Proceedings, Systems Modeling and Optimization, pages 144–162. Springer, Berlin, 1994.

    Google Scholar 

  10. C. Lemaréchal and C. Sagastizâbal. Variable metric bundle methods: from conceptual to implementable forms. Preprint, INRIA, BP 105, 78153 Le Chesnay, France, 1995.

    Google Scholar 

  11. R. Mifflin. A quasi-second-order proximal bundle algorithm. Mathematical Programming, 73: 51–72, 1996.

    MathSciNet  MATH  Google Scholar 

  12. R. Mifflin, D. Sun, and L. Qi. Quasi-Newton bundle-type methods for nondifferentiable convex optimization. SIAM J. Optimization, 8: 563–603, 1998.

    Article  MathSciNet  Google Scholar 

  13. H. Mine, K. Ohno, and M. Fukushima. A conjugate interior penalty method for certain convex programs. SIAM J. Control and Optimization, 15: 747–755, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  14. G.J. Minty. Monotone (nonlinear) operators in Hilbert space. Duke Math. J., 29: 341–346, 1962.

    Article  MathSciNet  MATH  Google Scholar 

  15. J.J. Moreau. Proximité et dualité dans un espace Hilbertien. Bull. Soc. Math. France, 93: 273–299, 1965.

    MathSciNet  MATH  Google Scholar 

  16. L. Qi. Second-order analysis of the Moreau-Yosida regularization of a convex function. Technical Report AMR 94/20, Dept. of Applied Math., University of New South Wales, Sydney, Australia, 1994.

    Google Scholar 

  17. L. Qi and X. Chen. A preconditioning proximal Newton method for nondifferentiable convex optimization. Mathematical Programming, 76: 411–429, 1997.

    MathSciNet  MATH  Google Scholar 

  18. M. Qian. The Variable Metric Proximal Point Algorithm: Theory and Application. Ph.D., University of Washington, Seattle, WA, 1992.

    Google Scholar 

  19. R.T. Rockafellar. Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. of Operations Research, 1: 97–116, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Zeidler. Nonlinear Functional Analysis and its Applications: II/A, Linear Monotone Operators. Springer-Verlag, New York, 1990.

    Book  MATH  Google Scholar 

  21. E. Zeidler. Nonlinear Functional Analysis and its Applications: II/B, Nonlinear Monotone Operators. Springer—Verlag, New York, 1990.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Qian, M., Burke, J.V. (1998). On the Local Super-Linear Convergence of a Matrix Secant Implementation of the Variable Metric Proximal Point Algorithm for Monotone Operators. In: Fukushima, M., Qi, L. (eds) Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods. Applied Optimization, vol 22. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6388-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6388-1_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4805-2

  • Online ISBN: 978-1-4757-6388-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics