Skip to main content

Role of the GABA Transporter in Epilepsy

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 548))

Abstract

The GABA transporter plays a well-established role in reuptake of GABA after synaptic release. The anticonvulsant effect of tiagabine appears to result largely from blocking this reuptake. However, there is another side to the GABA transporter, contributing to GABA release by reversing in response to depolarization. We have recently shown that this form of GABA release is induced by even small increases in extracellular [K+], and has a powerful inhibitory effect on surrounding neurons. This transporter-mediated GABA release is enhanced by the anticonvulsants gabapentin and vigabatrin. The latter drug also potently increases ambient [GABA], inducing tonic inhibition of neurons. Here we review the evidence in support of a physiological role for GABA transporter reversal, and the evidence that it is increased by high-frequency firing. We postulate that the GABA transporter is a major determinant of the level of tonic inhibition, and an important source of GABA release during seizures. These recent findings indicate that the GABA transporter plays a much more dynamic role in control of brain excitability than has previously been recognized. Further defining this role may lead to a better understanding of the mechanisms of epilepsy and new avenues for treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Attwell D, Barbour B, Szatkowski M. Nonvesicular release of neurotransmitter. Neuron 1993; 11: 401–407.

    Article  PubMed  CAS  Google Scholar 

  2. Belhage B, Hansen GH, Schousboe A. Depolarization by K* and glutamate activates different neurotransmitter release mechanisms in GABAergic neurons: vesicular versus nonvesicular release of GABA. Neurosci 1993; 54: 1019–1034.

    Article  CAS  Google Scholar 

  3. Bernath S, Zigmond MJ. Characterization of [3H]GABA release from striatal slices: evidence for a calcium-independent process via the GABA uptake system. Neuroscience 1988; 27: 563–570.

    Article  PubMed  CAS  Google Scholar 

  4. Bernstein EM, Quick MW. Regulation of y-aminobutyric acid (GABA) transporters by extracellular GABA. J Biol Chem 1999; 274: 889–895.

    Article  PubMed  CAS  Google Scholar 

  5. Borden LA. GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int 1996; 29: 335–356.

    Article  PubMed  CAS  Google Scholar 

  6. Brickley SG, Cull-Candy SG, Farrant M. Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol Lond 1996; 497: 753–759.

    PubMed  CAS  Google Scholar 

  7. Cammack JN, Rakhilin SV, Schwartz EA. A GABA transporter operates asymmetrically and with variable stoichiometry. Neuron 1994; 13: 949–960.

    Article  PubMed  CAS  Google Scholar 

  8. Cammack JN, Schwartz EA. Ions required for the electrogenic transport of GABA by horizontal cells of the catfish. J Physiol Lond 1993; 472: 81–102.

    PubMed  CAS  Google Scholar 

  9. Cherubini E, Gaiarsa JL, Ben-Ari Y. GABA: An excitatory transmitter in early postnatal life. Trends Neurosci 1991; 14: 515–519.

    Article  PubMed  CAS  Google Scholar 

  10. Clark JA, Amara SG. Stable expression of a neuronal gamma-aminobutyric acid transporter, GAT-3, in mammalian cells demonstrates unique pharmacological properties and ion dependence. Mol Pharmacol 1994; 46: 550–557.

    PubMed  CAS  Google Scholar 

  11. Conti F, Melone M, De Biasi S. Neuronal and glial localization of GAT-1, a high-affinity gamma-aminobutyric acid plasma membrane transporter, in human cerebral cortex: with a note on its distribution in monkey cortex. J Comp Neurol 1998; 396: 51–63.

    Article  PubMed  CAS  Google Scholar 

  12. Dingledine R, Korn SJ. Gamma-aminobutyric acid uptake and the termination of inhibitory synaptic potentials in the rat hippocampal slice. J Physiol Lond 1985; 366: 387–409.

    PubMed  CAS  Google Scholar 

  13. During MJ, Ryder KM, Spencer DD. Hippocampal GABA transporter function in temporal-lobe epilepsy. Nature 1995; 376: 174–177.

    Article  PubMed  CAS  Google Scholar 

  14. Engel D, Pahner I, Schulze K et al. Plasticity of rat central inhibitory synapses through GABA metabolism. J Physiol Lond 2001; 535: 473–482.

    Article  PubMed  CAS  Google Scholar 

  15. Gadea A, Lopez-Colome AM. Glial transporters for glutamate, glycine, and GABA: II. GABA transporters. J Neurosci Res 2001; 63: 461–468.

    Article  PubMed  CAS  Google Scholar 

  16. Gaspary HL, Wang W, Richerson GB. Carrier-mediated GABA release activates GABA receptors on hippocampal neurons. J Neurophysiol 1998; 80: 270–281.

    PubMed  CAS  Google Scholar 

  17. Honmou O, Kocsis JD, Richerson GB. Gabapentin potentiates the conductance increase induced by nipecotic acid in CAI pyramidal neurons in vitro. Epilepsy Res 1995; 20: 193–202.

    Article  PubMed  CAS  Google Scholar 

  18. Isaacson JS, Solis JM, Nicoll RA. Local and diffuse synaptic actions of GABA in the hippocampus. Neuron 1993; 10: 165–175.

    Article  PubMed  CAS  Google Scholar 

  19. Jung MJ, Palfreyman MG. Vigabatrin mechanisms of action. In: Levy RH, Mattson RH, Meldrum BS, eds. Antiepileptic drugs. New York: Raven Press, 1995: 903–913.

    Google Scholar 

  20. Kanner BI, Schuldiner S. Mechanism of transport and storage of neurotransmitters. CRC Crit Rev Biochem 1987; 22: 1–38.

    Article  PubMed  CAS  Google Scholar 

  21. Krnjevic K, Morris ME, Reiffenstein RJ. Changes in extracellular Ca2* and K* activity accompanying hippocampal discharges. Can J Physiol Pharmacol 1980; 58: 579–582.

    Article  PubMed  CAS  Google Scholar 

  22. Lerma J, Herranz AS, Herreras O et al. In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res 1986; 384: 145–155.

    Google Scholar 

  23. Levi G, Raiteri M. Carrier-mediated release of neurotransmitters. Trends Neurosci 1993; 16: 415–419.

    Article  PubMed  CAS  Google Scholar 

  24. Levitan ES, Schofield PR, Burt DR et al. Structural and functional basis for GABAA receptor heterogeneity. Nature 1988; 335: 76–79.

    Article  PubMed  CAS  Google Scholar 

  25. Lu CC, Hilgemann DW. GAT1 (GABA:Na’:C1“) cotransport function. Steady state studies in giant Xenopus oocyte membrane patches. J Gen Physiol 1999; 114: 429–444.

    Article  PubMed  CAS  Google Scholar 

  26. Matskevitch I, Wagner CA, Stegen C et al. Functional characterization of the Betaine/ gamma-aminobutyric acid transporter BGT-1 expressed in Xenopus oocytes. J Biol Chem 1999; 274: 16709–16716.

    Article  PubMed  CAS  Google Scholar 

  27. Michelson HB, Wong RK. Excitatory synaptic responses mediated by GABAA receptors in the hippocampus. Science 1991; 253: 1420–1423.

    Article  PubMed  CAS  Google Scholar 

  28. Minelli A, Brecha NC, Karschin C et al. GAT-1, a high-affinity GABA plasma membrane transporter, is localized to neurons and astroglia in the cerebral cortex. J Neurosci 1995; 15: 7734–7746.

    PubMed  CAS  Google Scholar 

  29. Minelli A, DeBiasi S, Brecha NC et al. GAT-3, a high-affinity GABA plasma membrane transporter, is localized to astrocytic processes, and it is not confined to the vicinity of GABAergic synapses in the cerebral cortex. J Neurosci 1996; 16: 6255–6264.

    PubMed  CAS  Google Scholar 

  30. Nusser Z, Mody I. Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells. J Neurophysiol 2002; 87: 2624–2628.

    PubMed  CAS  Google Scholar 

  31. Otis TS, Staley KJ, Mody I. Perpetual inhibitory activity in mammalian brain slices generated by spontaneous GABA release. Brain Res 1991; 545: 142–150.

    Article  PubMed  CAS  Google Scholar 

  32. Otsuka M, Obata K, Miyata Y et al. Measurement of gamma-aminobutyric acid in isolated nerve cells of cat central nervous system. J Neurochem 1971; 18: 287–295.

    Article  PubMed  CAS  Google Scholar 

  33. Overstreet LS, Westbrook GL. Paradoxical reduction of synaptic inhibition by vigabatrin. J Neurophysiol 2001; 86: 596–603.

    PubMed  CAS  Google Scholar 

  34. Overstreet LS, Westbrook GL. Synapse density regulates independence at unitary inhibitory synapses. J Neurosci 2003; 23: 2618–2626.

    PubMed  CAS  Google Scholar 

  35. Petroff OA, Behar KL, Mattson RH et al. Human brain gamma-aminobutyric acid levels and seizure control following initiation of vigabatrin therapy. J Neurochem 1996a; 67: 2399–2404.

    Article  PubMed  CAS  Google Scholar 

  36. Petroff OA, Rothman DL, Behar KL et al. The effect of gabapentin on brain gamma-aminobutyric acid in patients with epilepsy. Ann Neurol 19966; 39: 95–99.

    Google Scholar 

  37. Pietrini G, Suh YJ, Edelmann L et al. The axonal gamma-aminobutyric acid transporter GAT-1 is sorted to the apical membranes of polarized epithelial cells. J Biol Chem 1994; 269: 4668–4674.

    PubMed  CAS  Google Scholar 

  38. Pin JP, Bockaert J. Two distinct mechanisms, differentially affected by excitatory amino acids, trigger GABA release from fetal mouse striatal neurons in primary culture. J Neurosci 1989; 9: 648–656.

    PubMed  CAS  Google Scholar 

  39. Radian R, Ottersen OP, Storm-Mathisen J et al. Immunocytochemical localization of the GABA transporter in rat brain. J Neurosci 1990; 10: 1319–1330.

    PubMed  CAS  Google Scholar 

  40. Ribak CE, Tong WM, Brecha NC. GABA plasma membrane transporters, GAT-1 and GAT-3, display different distributions in the rat hippocampus. J Comp Neurol 1996; 367: 595–606.

    Article  PubMed  CAS  Google Scholar 

  41. Roepstorff A, Lambert JD. Comparison of the effect of the GABA uptake blockers, tiagabine and nipecotic acid, on inhibitory synaptic efficacy in hippocampal CAl neurones. Neurosci Lett 1992; 146: 131–134.

    Article  PubMed  CAS  Google Scholar 

  42. Rossi DJ, Hamann M. Spillover-mediated transmission at inhibitory synapses promoted by high affinity as subunit GABAA receptors and glomerular geometry. Neuron 1998; 20: 783–795.

    Article  PubMed  CAS  Google Scholar 

  43. Saransaari P, Oja SS. Release of GABA and taurine from brain slices. Prog Neurobiol 1992; 38: 455–482.

    Article  PubMed  CAS  Google Scholar 

  44. Saxena NC, Macdonald RL. Properties of putative cerebellar gamma-aminobutyric acid A receptor isoforms. Mol Pharmacol 1996; 49: 567–579.

    PubMed  CAS  Google Scholar 

  45. Schwartz EA. Calcium-independent release of GABA from isolated horizontal cells of the toad retina. J Physiol Lond 1982; 323: 211–227.

    PubMed  CAS  Google Scholar 

  46. Schwartz EA. Depolarization without calcium can release gamma-aminobutyric acid from a retinal neuron. Science 1987; 238: 350–355.

    Article  PubMed  CAS  Google Scholar 

  47. Somjen G, Giacchino JL. Potassium and calcium concentrations in interstitial fluid of hippocampal formation during paroxysmal responses. J Neurophysiol 1985; 53: 1098–1108.

    PubMed  CAS  Google Scholar 

  48. Staley KJ, Soldo BL, Proctor WR. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 1995; 269: 977–981.

    Article  PubMed  CAS  Google Scholar 

  49. Stell BM, Mody I. Receptors with different affinities mediate phasic and tonic GABA(A) conductances in hippocampal neurons. J Neurosci 2002; 22:RC223.

    Google Scholar 

  50. Taylor CP, Gee NS, Su TZ et al. A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Res 1998; 29: 233–249.

    Article  PubMed  CAS  Google Scholar 

  51. Thompson SM, Gahwiler BH. Effects of the GABA uptake inhibitor tiagabine on inhibitory synaptic potentials in rat hippocampal slice cultures. J Neurophysiol 1992; 67: 1698–1701.

    PubMed  CAS  Google Scholar 

  52. Tossman U, Jonsson G, Ungerstedt U. Regional distribution and extracellular levels of amino acids in rat central nervous system. Acta Physiol Scand 1986; 127: 533–545.

    Article  PubMed  CAS  Google Scholar 

  53. Turner TJ, Goldin SM. Multiple components of synaptosomal [3H]-gamma-aminobutyric acid release resolved by a rapid superfusion system. Biochem 1989; 28: 586–593.

    Article  CAS  Google Scholar 

  54. Welty DF, Schielke GP, Vartanian MG et al. Gabapentin anticonvulsant action in rats: disequilibrium with peak drug concentrations in plasma and brain microdialysate. Epilepsy Res 1993; 16: 175–181.

    Article  PubMed  CAS  Google Scholar 

  55. Whitworth TL, Quick MW. Upregulation of gamma-aminobutyric acid transporter expression: role of alkylated gamma-aminobutyric acid derivatives. Biochem Soc Trans 2001; 29: 736–741.

    Article  PubMed  CAS  Google Scholar 

  56. Williamson A, Telfeian AE, Spencer DD. Prolonged GABA responses in dentate granule cells in slices isolated from patients with temporal lobe sclerosis. J Neurophysiol 1995; 74: 378–387.

    PubMed  CAS  Google Scholar 

  57. Wu Y, Wang W, Richerson GB. GABA transaminase inhibition induces spontaneous and enhances depolarization-evoked GABA efflux via reversal of the GABA transporter. J Neurosci 2001; 21: 2630–2639.

    PubMed  CAS  Google Scholar 

  58. Wu Y, Wang W, Richerson GB. Vigabatrin induces tonic inhibition via GABA transporter reversal without increasing vesicular GABA release. J Neurophysiol 2003; 89: 2021–2034.

    Article  PubMed  CAS  Google Scholar 

  59. Zerangue N, Kavanaugh MP. Flux coupling in a neuronal glutamate transporter. Nature 1996; 383: 634–637.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Richerson, G.B., Wu, Y. (2004). Role of the GABA Transporter in Epilepsy. In: Binder, D.K., Scharfman, H.E. (eds) Recent Advances in Epilepsy Research. Advances in Experimental Medicine and Biology, vol 548. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6376-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6376-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3418-5

  • Online ISBN: 978-1-4757-6376-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics