Malformations of Cortical Development: Molecular Pathogenesis and Experimental Strategies

  • Peter B. Crino
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 548)

Abstract

Malformations of cortical development (MCD) are developmental brain lesions char-acterized by abnormal formation of the cerebral cortex and a high clinical association with epilepsy in infants, children, and adults. Despite multiple anti-epileptic drugs (AEDs), treatment of epilepsy associated with MCD may require cortical resection performed to remove the cytoarchitecturally abnormal region of cortex. Single genes responsible for distinct MCD including lissencephaly, subcortical band heterotopia, and tuberous sclerosis, have been identified and permit important mechanistic insights into how gene mutations result in abnormal cortical cytoarchitecture. The pathogenesis of MCD such as focal cortical dysplasia, hemimegalencephaly, and polymicrogyria, remains unknown. A variety of new techniques including cDNA array analysis now allow for analysis of gene expression within MCD.

Keywords

Tuberous Sclerosis Complex Neuronal Migration Focal Cortical Dysplasia Infantile Spasm Cortical Dysplasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aasly J, Silfvenius H, Aas TC et al. Proton magnetic resonance spectroscopy of brain biopsies from patients with intractable epilepsy. Epilepsy Res 1999; 35 (3): 211–217.PubMedCrossRefGoogle Scholar
  2. 2.
    Andermann F. Cortical dysplasias and epilepsy: a review of the architectonic, clinical, and seizure patterns. Adv Neurol 2000; 84: 479–496.PubMedGoogle Scholar
  3. 3.
    Avoli M, Bernasconi A, Mattia D et al. Epileptiform discharges in the human dysplastic neocortex: in vitro physiology and pharmacology. Ann Neurol 1999; 46: 816–826.PubMedCrossRefGoogle Scholar
  4. 4.
    Baraban S. Epileptogenesis in the dysplastic brain: a revival of familiar themes. Epilepsy Currents 2001; 1: 22–29.CrossRefGoogle Scholar
  5. 5.
    Barkovich AJ, Kuzniecky RI. Gray matter heterotopia. Neurology 2000; 55: 1603–1608.PubMedCrossRefGoogle Scholar
  6. 6.
    Barkovich AJ, Kuzniecky RI, Jackson GD et al. Classification system for malformations of cortical development: update 2001. Neurology 2001; 57 (12): 2168–78.PubMedCrossRefGoogle Scholar
  7. 7.
    Bernasconi A, Martinez V, Rosa-Neto P et al. Surgical resection for intractable epilepsy in “double cortex” syndrome yields inadequate results. Epilepsia 2001; 42: 1124–1129.PubMedCrossRefGoogle Scholar
  8. 8.
    Bix GJ, Clark GD. Platelet-activating factor receptor stimulation disrupts neuronal migration in vitro. J Neurosci 1998; 18: 307–318.PubMedGoogle Scholar
  9. 9.
    Bordey A, Lyons SA, Hablitz JJ et al. Electrophysiological characteristics of reactive astrocytes in experimental cortical dysplasia. J Neurophysiol 2001; 85: 1719–1731.PubMedGoogle Scholar
  10. 10.
    Briellmann RS, Jackson GD, Torn-Broers Y et al. Causes of epilepsies: insights from discordant monozygous twins. Ann Neurol 2001; 49: 45–52.PubMedCrossRefGoogle Scholar
  11. 11.
    Brodtkorb E, Nilsen G, Smevik O et al. Epilepsy and anomalies of neuronal migration: MRI and clinical aspects. Acta Neurol Scand 1992; 86: 24–32.PubMedCrossRefGoogle Scholar
  12. 12.
    Brunelli S, Faiella A, Capra V et al. Germline mutations in the homeobox gene EMX2 in patients with severe schizencephaly. Nat Genet 1996; 12: 94–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Burgess HA, Reiner O. Cleavage of doublecortin-like kinase by calpain releases an active kinase fragment from a microtubule anchorage domain. J Biol Chem 2001; 276: 36397–36403.PubMedCrossRefGoogle Scholar
  14. 14.
    Burgess HA, Reiner O. Doublecortin-like kinase is associated with microtubules in neuronal growth cones. Mol Cell Neurosci 2000; 16: 529–41PubMedCrossRefGoogle Scholar
  15. 15.
    Caspi M, Atlas R, Kantor A et al. Interaction between LIS1 and doublecortin, two lissencephaly gene products. Hum Mol Genet 2000; 9: 2205–2213.PubMedCrossRefGoogle Scholar
  16. 16.
    Castro PA, Cooper EC, Lowenstein DH et al. Hippocampal heterotopia lack functional Kv4.2 potassium channels in the methylazoxymethanol model of cortical malformations and epilepsy. J Neurosci 2001; 21: 6626–6634.PubMedGoogle Scholar
  17. 17.
    Catania MG, Mischel PS, Vinters HV. Hamartin and tuberin interaction with the G2/M cyclin-dependent kinase CDK1 and its regulatory cyclins A and B. J Neuropathol Exp Neurol 2001; 60: 711–723.PubMedGoogle Scholar
  18. 18.
    Chen ZF, Schottler F, Bertram E et al. Distribution and initiation of seizure activity in a rat brain with subcortical band heterotopia. Epilepsia 2000; 41: 493–501.PubMedCrossRefGoogle Scholar
  19. 19.
    Chou K, Crino PB. Epilepsy and cortical dysplasias. Curr Treat Options Neurol 2000; 2: 543–552.PubMedCrossRefGoogle Scholar
  20. 20.
    Clark GD, Mizuguchi M, Antalffy B et al. Predominant localization of the LIS family of gene products to Cajal-Retzius cells and ventricular neuroepithelium in the developing human cortex. J Neuropathol Exp Neurol 1997; 56: 1044–1052.PubMedCrossRefGoogle Scholar
  21. 21.
    Cormand B, Avela K, Pihko H et al. Assignment of the muscle-eye-brain disease gene to 1p32-p34 by linkage analysis and homozygosity mapping. Am J Hum Genet 1999; 64: 126–135.PubMedCrossRefGoogle Scholar
  22. 22.
    Cormand B, Pihko H, Bayes M et al Clinical and genetic distinction between Walker-Warburg syndrome and muscle-eye-brain disease. Neurology 2001; 56: 1059–1069.PubMedCrossRefGoogle Scholar
  23. 23.
    Crino, PB, Miyata H, Vinters HVV. Neurodevelopmental disorders as a cause of seizures: neuropathologic, genetic, and mechanistic considerations. Brain Pathol 2002; 12: 212–33.PubMedCrossRefGoogle Scholar
  24. 24.
    Crino PB, Duhaime AC, Baltuch G et al. Differential expression of glutamate and GABA-A receptor subunit mRNA in cortical dysplasia. Neurology 2001; 56: 906–913.PubMedCrossRefGoogle Scholar
  25. 25.
    Crino PB, Eberwine J. Cellular and molecular basis of cerebral dysgenesis. J Neurosci Res 1997; 50: 907–916.PubMedCrossRefGoogle Scholar
  26. 26.
    Crino PB, Henske EP. New developments in the neurobiology of the tuberous sclerosis complex. Neurology 1999; 53: 1384–1390.PubMedCrossRefGoogle Scholar
  27. 27.
    Crino PB, Jin H, Robinson M et al. Increased expression of the neuronal glutamate transporter (EAAT3/EAAC1) in hippocampal and neocortical epilepsy. Epilepsia 2002; 43: 211–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Crino PB, Trojanowski JQ, Dichter MA et al. Embryonic neuronal markers in tuberous sclerosis: single-cell molecular pathology. Proc Nat! Acad Sci USA 1996; 93: 14152–14157.CrossRefGoogle Scholar
  29. 29.
    Crino PB, Trojanowski JQ, Eberwine J. Internexin, MAP1B, and nestin in cortical dysplasia as markers of developmental maturity. Acta Neuropathol 1997; 93: 619–627.PubMedCrossRefGoogle Scholar
  30. 30.
    D’Arcangelo G, Miao GG, Chen SC et al. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 1995; 374: 719–723.PubMedCrossRefGoogle Scholar
  31. 31.
    DeFazio RA, Hablitz JJ. Alterations in NMDA receptors in a rat model of cortical dysplasia. J Neurophysiol 2000; 83: 315–321.PubMedGoogle Scholar
  32. 32.
    De Rosa MJ, Secor DL, Barsom M et al. Neuropathologie findings in surgically treated hemimegalencephaly: immunohistochemical, morphometric, and ultrastructural study. Acta Neuropathol 1992; 84: 250–260.PubMedCrossRefGoogle Scholar
  33. 33.
    des Portes V, Pinard JM, Billuart P et al. A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 1998; 92: 51–61.PubMedCrossRefGoogle Scholar
  34. 34.
    Duong T, De Rosa MJ, Poukens V et al. Neuronal cytoskeletal abnormalities in human cerebral cortical dysplasia. Acta Neuropathol 1994; 87: 493–503.PubMedCrossRefGoogle Scholar
  35. 35.
    Engel Jr J. Surgery for seizures. N Engl J Med 1996; 334: 647–652.PubMedCrossRefGoogle Scholar
  36. 36.
    Farrell MA, DeRosa MJ, Curran JG et al. Neuropathologie findings in cortical resections (including hemispherectomies) performed for the treatment of intractable childhood epilepsy. Acta Neuropathol 1992; 83: 246–259.PubMedCrossRefGoogle Scholar
  37. 37.
    Faulkner NE, Dujardin DL, Tai CY et al. A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function. Nat Cell Biol 2000; 2: 784–791.PubMedCrossRefGoogle Scholar
  38. 38.
    Feng Y, Olson EC, Stukenberg PT et al. LIS1 regulates CNS lamination by interacting with mNudE, a central component of the centrosome. Neuron 2000; 28: 665–679.PubMedCrossRefGoogle Scholar
  39. 39.
    Feng Y, Walsh CA. Protein-protein interactions, cytoskeletal regulation and neuronal migration. Nat Rev Neurosci 2001; 2: 408–16.PubMedCrossRefGoogle Scholar
  40. 40.
    Ferrer I, Oliver B, Russi A et al. Parvalbumin and calbindin-D28k immunocytochemistry in human neocortical epileptic foci. J Neurol Sci 1994; 123: 18–25.PubMedCrossRefGoogle Scholar
  41. 41.
    Ferrer I, Pineda M, Tallada M et al. Abnormal local-circuit neurons in epilepsia partialis continua associated with focal cortical dysplasia. Acta Neuropathol 1992; 83: 647–652.PubMedCrossRefGoogle Scholar
  42. 42.
    Fleck MW, Hirotsune S, Gambello MJ et al. Hippocampal abnormalities and enhanced excitability in a murine model of human lissencephaly. J Neurosci 2000; 20: 2439–2450.PubMedGoogle Scholar
  43. 43.
    Fox JW, Lamperti ED, Eksioglu YZ et al. Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 1998; 21: 1315–1325.PubMedCrossRefGoogle Scholar
  44. 44.
    Frater JL, Prayson RA, Morris III HH et al. Surgical pathologic findings of extratemporal-based intractable epilepsy: a study of 133 consecutive resections. Arch Pathol Lab Med 2000; 124: 545–549.PubMedGoogle Scholar
  45. 45.
    Friocourt G, Chafey P, Billuart P et al. Doublecortin interacts with p. subunits of clathrin adaptor complexes in the developing nervous system. Mol Cell Neurosci 2001; 18: 307–319.PubMedCrossRefGoogle Scholar
  46. 46.
    Gao X, Pan D TSCI and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev 2001; 15: 1383–1392.PubMedCrossRefGoogle Scholar
  47. 47.
    Garbelli R, Munari C, De Biasi S et al. Taylor’s cortical dysplasia: a confocal and ultrastructural immunohistochemical study. Brain Pathol 1999; 9: 445–461.PubMedCrossRefGoogle Scholar
  48. 48.
    Gleeson JG, Allen KM, Fox JW et al. Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 1998; 92: 63–72.PubMedCrossRefGoogle Scholar
  49. 49.
    Gleeson JG, Lin PT, Flanagan LA et al. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 1999a; 23: 257–271.PubMedCrossRefGoogle Scholar
  50. 50.
    Gleeson JG, Minnerath SR, Fox JW et al. Characterization of mutations in the gene doublecortin in patients with double cortex syndrome. Ann Neurol 19996; 45: 146–153.Google Scholar
  51. 51.
    Golden JA. Cell migration and cerebral cortical development. Neuropathol Appl Neurobiol 2001; 27: 22–28.PubMedCrossRefGoogle Scholar
  52. 52.
    Guerreiro MM, Andermann F, Andermann E et al. Surgical treatment of epilepsy in tuberous sclerosis: strategies and results in 18 patients. Neurology 1998; 51: 1263–1269.PubMedCrossRefGoogle Scholar
  53. 53.
    Gutmann DH, Zhang Y, Hasbani MJ et al. Expression of the tuberous sclerosis complex gene products, hamartin and tuberin, in central nervous system tissues. Acta Neuropathol 2000; 99: 223–230.PubMedCrossRefGoogle Scholar
  54. 54.
    Hannan AJ, Servotte S, Katsnelson A et al. Characterization of nodular neuronal heterotopia in children. Brain 1999; 122: 219–238.PubMedCrossRefGoogle Scholar
  55. 55.
    Hauser WA, Annegers JF, Kurland LT. Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935–1984. Epilepsia 1993; 34: 453–468.PubMedCrossRefGoogle Scholar
  56. 56.
    Hirotsune S, Fleck MW, Gambello MJ et al. Graded reduction of Pafahlbl (Lis]) activity results in neuronal migration defects and early embryonic lethality. Nat Genet 1998; 19: 333–339.PubMedCrossRefGoogle Scholar
  57. 57.
    Ho SS, Kuzniecky RI, Gilliam F et al. Temporal lobe developmental malformations and epilepsy: dual pathology and bilateral hippocampal abnormalities. Neurology 1998; 50: 748–54PubMedCrossRefGoogle Scholar
  58. 58.
    Hoffmann B, Zuo W, Liu A et al. The LIS1-related protein NUDF of Aspergillus nidulans and its interaction partner NUDE bind directly to specific subunits of dynein and dynactin and to a-and y-tubulin. J Biol Chem 2001; 276: 38877–38884.PubMedCrossRefGoogle Scholar
  59. 59.
    Hong SE, Shugart YY, Huang DT et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 2000; 26: 93–96.PubMedCrossRefGoogle Scholar
  60. 60.
    Jacobs KM, Kharazia VN, Prince DA. Mechanisms underlying epileptogenesis in cortical malformations. Epilepsy Res 1999; 36: 165–188.PubMedCrossRefGoogle Scholar
  61. 61.
    Jahan R, Mischel PS, Curran JG et al. Bilateral neuropathologic changes in a child with hemimegalencephaly. Pediatr Neurol 1997; 17: 344–349.PubMedCrossRefGoogle Scholar
  62. 62.
    Johnson MW, Emelin JK, Park SH et al. Colocalization of TSCI and TSC2 gene products in tubers of patients with tuberous sclerosis. Brain Pathol 1999; 9: 45–54.PubMedCrossRefGoogle Scholar
  63. 63.
    Johnson MW, Kerfoot C, Bushnell T et al Hamartin and tuberin expression in human tissues. Mod Pathol 2001; 14: 202–210.PubMedCrossRefGoogle Scholar
  64. 64.
    Kacharmina JE, Crino PB, Eberwine J. Preparation of cDNA from single cells and subcellular regions. Methods Enzymol 1999; 303: 3–18.PubMedCrossRefGoogle Scholar
  65. 65.
    Kerfoot C, Vinters HV, Mathern GW. Cerebral cortical dysplasia: giant neurons show potential for increased excitation and axonal plasticity. Dev Neurosci 1999; 21: 260–270.PubMedCrossRefGoogle Scholar
  66. 66.
    Kerfoot C, Wienecke R, Menchine M et al. Localization of tuberous sclerosis 2 mRNA and its protein product tuberin in normal human brain and in cerebral lesions of patients with tuberous sclerosis. Brain Pathol 1996; 6: 367–375.PubMedCrossRefGoogle Scholar
  67. 67.
    Kobayashi K, Nakahori Y, Miyake M et al. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 1998; 394: 388–392.PubMedCrossRefGoogle Scholar
  68. 68.
    Koh S, Jayakar P, Dunoyer C et al. Epilepsy surgery in children with tuberous sclerosis complex: presurgical evaluation and outcome. Epilepsia 2000; 41: 1206–1213.PubMedCrossRefGoogle Scholar
  69. 69.
    Kothare SV, VanLandingham K, Armon C et al. Seizure onset from periventricular nodular heterotopias: depth-electrode study. Neurology 1998; 51: 1723–1727.PubMedCrossRefGoogle Scholar
  70. 70.
    Kyin R, Hua Y, Baybis M et al. Differential cellular expression of neurotrophins in cortical tubers of the tuberous sclerosis complex. Am J Pathol 2001; 159: 1541–1554.PubMedCrossRefGoogle Scholar
  71. 71.
    Lamb RF, Roy C, Diefenbach TJ et al. The TSC./ tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nat Cell Biol 2000; 2: 281–287.PubMedCrossRefGoogle Scholar
  72. 72.
    Leventer RJ, Mills PL, Dobyns WB. X-linked malformations of cortical development. Am J Med Genet 2000; 97: 213–220.PubMedCrossRefGoogle Scholar
  73. 73.
    Li MG, Serr M, Edwards K et al Filamin is required for ring canal assembly and actin organization during Drosophila oogenesis. J Cell Biol 1999; 146: 1061–1074.PubMedCrossRefGoogle Scholar
  74. 74.
    Lombroso CT. Can early postnatal closed head injury induce cortical dysplasia. Epilepsia 2000; 41: 245–253.PubMedCrossRefGoogle Scholar
  75. 75.
    Mathern GW, Cepeda C, Hurst RS et al. neurons recorded from pediatric epilepsy surgery patients with cortical dysplasia. Epilepsia 2001; 41 (Suppl 6): S162–7.CrossRefGoogle Scholar
  76. 76.
    Mathern GW, Giza CC, Yudovin S et al. Postoperative seizure control and antiepileptic drug use in pediatric epilepsy surgery patients: The UCLA experience, 1986–1997. Epilepsia 1999; 40: 1740–1749.PubMedCrossRefGoogle Scholar
  77. 77.
    Matsumoto N, Leventer RJ, Kuc JA et al. Mutation analysis of the DCX gene and genotype/ phenotype correlation in subcortical band heterotopia. Eur J Hum Genet 2001; 9: 5–12.PubMedCrossRefGoogle Scholar
  78. 78.
    Mattia D, Olivier A, Avoli M. Seizure-like discharges recorded in human dysplastic neocortex maintained in vitro. Neurology 1995; 45: 1391–1395.PubMedCrossRefGoogle Scholar
  79. 79.
    McConnell SK. Constructing the cerebral cortex: Neurogenesis and fate determination. Neuron 1995; 15: 761–768.PubMedCrossRefGoogle Scholar
  80. 80.
    Menchine M, Emelin JK, Mischel PS et al. Tissue and cell-type specific expression of the tuberous sclerosis gene, TSC2, in human tissues. Mod Pathol 1996; 9: 1071–1080.PubMedGoogle Scholar
  81. 81.
    Mikuni N, Babb TL, Ying Z et al. NMDA-receptors 1 and 2A/B coassembly increased in human epileptic focal cortical dysplasia. Epilepsia 1999; 40: 1683–1687.PubMedCrossRefGoogle Scholar
  82. 82.
    Mikuni N, Nishiyama K, Babb TL et al. Decreased calmodulin-NR1 coassembly as a mechanism for focal epilepsy in cortical dysplasia. Neuroreport 1999; 10: 1609–1612.PubMedCrossRefGoogle Scholar
  83. 83.
    Mischel PS, Nguyen LP, Vinters HV Cerebral cortical dysplasia associated with pediatric epilepsy: review of neuropathologic features and proposal for a grading system. J Neuropathol Exp Neurol 1995; 54: 137–153.PubMedCrossRefGoogle Scholar
  84. 84.
    Nacher J, Crespo C, McEwen BS. Doublecortin expression in the adult rat telencephalon. Eur J Neurosci 2001; 14: 629–644.PubMedCrossRefGoogle Scholar
  85. 85.
    Najm IM, Ying Z, Babb T et al. Epileptogenicity correlated with increased N-methyl-D-aspartate receptor subunit NR2A/B in human focal cortical dysplasia. Epilepsia 2000; 41: 971–976.PubMedCrossRefGoogle Scholar
  86. 86.
    Palmini A, Gambardella A, Andermann F et al. Intrinsic epileptogenicity of human dysplastic cortex as suggested by corticography and surgical results. Ann Neurol 1995; 37: 476–487.PubMedCrossRefGoogle Scholar
  87. 87.
    Park SH, Pepkowitz SH, Kerfoot C et al. Tuberous sclerosis in a 20-week gestation fetus: immunohistochemical study. Acta Neuropathol 1997; 94: 180–186.PubMedCrossRefGoogle Scholar
  88. 88.
    Peacock WJ, Wehby-Grant MC, Shields WD et al. Hemispherectomy for intractable seizures in children: a report of 58 cases. Childs Nery Syst 1996; 12: 376–384.CrossRefGoogle Scholar
  89. 89.
    Piao X, Basel-Vanagaite L, Straussberg R et al. An autosomal recessive form of bilateral frontoparietal polymicrogyria maps to chromosome 16812.2–21. Am J Hum Genet 2002; 70: 1028–33.PubMedCrossRefGoogle Scholar
  90. 90.
    Potter CJ, Huang H, Xu T. Drosophila Tscl functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell 2001; 105: 357–368.PubMedCrossRefGoogle Scholar
  91. 91.
    Poussaint TY, Fox JW, Dobyns WB et al. Periventricular nodular heterotopia in patients with filamin-1 gene mutations: neuroimaging findings. Pediatr Radiol 2000; 30: 748–755.PubMedCrossRefGoogle Scholar
  92. 92.
    Prayson RA. Clinicopathological findings in patients who have undergone epilepsy surgery in the first year of life. Pathol Int 2000; 50: 620–625.PubMedCrossRefGoogle Scholar
  93. 93.
    Preul MC, Leblanc R, Cendes F et al. Function and organization in dysgenic cortex. Case report. J Neurosurg 1997; 87: 113–121.PubMedCrossRefGoogle Scholar
  94. 94.
    Qin J, Mizuguchi M, Itoh M et al. Immunohistochemical expression of doublecortin in the human cerebrum: comparison of normal development and neuronal migration disorders. Brain Res 2000; 863: 225–232.PubMedCrossRefGoogle Scholar
  95. 95.
    Rafiki A, Chevassus-au-Louis N, Ben-Ari Y et al. Glutamate receptors in dysplastic cortex: an in situ hybridization and immunohistochemistry study in rats with prenatal treatment with methylazoxymethanol. Brain Res 1998; 782: 142–152.CrossRefGoogle Scholar
  96. 96.
    Rakic P. Principles of neural cell migration. Experientia 1990; 46: 882–891.PubMedCrossRefGoogle Scholar
  97. 97.
    Reiner O, Albrecht U, Gordon M et al. Lissencephaly gene (LIS1) expression in the CNS suggests a role in neuronal migration. J Neurosci 1995; 15: 3730–3738.PubMedGoogle Scholar
  98. 98.
    Reiner O, Carrozzo R, Shen Y et al. Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 1993; 364: 717–721.PubMedCrossRefGoogle Scholar
  99. 99.
    Roper SN, Eisenschenk S, King MA. Reduced density of parvalbumin-and calbindin D28-immunoreactive neurons in experimental cortical dysplasia. Epilepsy Res 1999; 37: 63–71.PubMedCrossRefGoogle Scholar
  100. 100.
    Santi MR, Golden JA. Periventricular heterotopia may result from radial glial fiber disruption. J Neuropathol Exp Neurol 2001; 60: 856–862.PubMedGoogle Scholar
  101. 101.
    Sapir T, Elbaum M, Reiner O. Reduction of microtubule catastrophe events by LIS1, platelet-activating factor acetylhydrolase subunit. EMBO J 1997; 16: 6977–6984.PubMedCrossRefGoogle Scholar
  102. 102.
    Sheen VL, Dixon PH, Fox JW et al. Mutations in the X-linked filamin 1 gene cause periventricular nodular heterotopia in males as well as in females. Hum Mol Genet 2001; 10: 1775–1783.PubMedCrossRefGoogle Scholar
  103. 103.
    Spreafico R, Battaglia G, Arcelli P et al. Cortical dysplasia: an immunocytochemical study of three patients. Neurology 1998; 50: 27–36.PubMedCrossRefGoogle Scholar
  104. 104.
    Spreafico R, Tassi L, Colombo N et al. Inhibitory circuits in human dysplastic tissue. Epilepsia 2000; 41 (Suppl 6): S168–73.PubMedCrossRefGoogle Scholar
  105. 105.
    Tassi L, Pasquier B, Minotti L et al. Cortical dysplasia: electroclinical, imaging, and neuropathologic study of 13 patients. Epilepsia 2001; 42: 1112–1123.PubMedCrossRefGoogle Scholar
  106. 106.
    Taylor DC, Falconer MA, Bruton CJ et al. Focal dysplasia of the cerebral cortex in epilepsy. J Neurol Neurosurg Psychiatry 1971; 34: 369–387.PubMedCrossRefGoogle Scholar
  107. 107.
    Taylor KR, Holzer AK, Bazan JF et al. Patient mutations in doublecortin define a repeated tubulin-binding domain. J Biol Chem 2000; 275: 34442–34450.PubMedCrossRefGoogle Scholar
  108. 108.
    The European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 1993; 75: 1305–1315.CrossRefGoogle Scholar
  109. 109.
    van Slegtenhorst M, de Hoogt R, Hermans C et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 1997; 277: 805–808.PubMedCrossRefGoogle Scholar
  110. 110.
    Vinters HV. Surgical pathologic findings of extratemporal-based intractable epilepsy. A study of 133 consecutive cases. Arch Pathol Lab Med 2000; 124: 1111–1112.PubMedGoogle Scholar
  111. 111.
    Vinters HV. Histopathology of brain tissue from patients with infantile spasms. Int Rev Neurobiol 2002; 49 (in press).Google Scholar
  112. 112.
    Vinters HV, De Rosa MJ, Farrell MA. Neuropathologie study of resected cerebral tissue from patients with infantile spasms. Epilepsia 1993; 34: 772–779.PubMedCrossRefGoogle Scholar
  113. 113.
    Vinters HV, Fisher RS, Cornford ME et al. Morphological substrates of infantile spasms: studies based on surgically resected cerebral tissue. Child’s Nerv Syst 1992; 8: 8–17.PubMedCrossRefGoogle Scholar
  114. 114.
    Vinters HV, Park SH, Johnson MW et al. Cortical dysplasia, genetic abnormalities and neurocutaneous syndromes. Dev Neurosci 1999; 21: 248–259.PubMedCrossRefGoogle Scholar
  115. 115.
    Walsh CA. Genetic malformations of the human cerebral cortex. Neuron 1999; 23: 19–29.PubMedCrossRefGoogle Scholar
  116. 116.
    White R, Hua Y, Scheithauer B et al. Selective alterations in glutamate and GABA receptor subunit mRNA expression in dysplastic neurons and giant cells of cortical tubers. Ann Neurol 2001; 49: 67–78.PubMedCrossRefGoogle Scholar
  117. 117.
    Wick W, Grimmel C, Wild-Bode C et al. Ezrin-dependent promotion of glioma cell clonogenicity, motility, and invasion mediated by BCL-2 and transforming growth factor-132. J Neurosci 2001; 21: 3360–3368.PubMedGoogle Scholar
  118. 118.
    Wienecke R, Konig A, DeClue JE. Identification of tuberin, the tuberous sclerosis-2 product. Tuberin possesses specific Rap1GAP activity. J Biol Chem 1995; 270: 16409–16414.PubMedCrossRefGoogle Scholar
  119. 119.
    Wienecke R, Maize Jr JC, Shoarinejad F et al. Colocalization of the TSC2 product tuberin with its target Rap]. in the Golgi apparatus. Oncogene 1996; 13: 913–923.PubMedGoogle Scholar
  120. 120.
    Yamanouchi H, Jay V, Otsubo H et al. Early forms of microtubule-associated protein are strongly expressed in cortical dysplasia. Acta Neuropathol 1998; 95: 466–470.PubMedCrossRefGoogle Scholar
  121. 121.
    Ying Z, Babb TL, Comair YG et al. Induced expression of NMDAR2 proteins and differential expression of NMDAR1 splice variants in dysplastic neurons of human epileptic neocortex. J Neuropathol Exp Neurol 1998; 57: 47–62.PubMedCrossRefGoogle Scholar
  122. 122.
    Yoshida A, Kobayashi K, Manya H et al. Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell 2001; 1: 717–24.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Peter B. Crino

There are no affiliations available

Personalised recommendations