Solid-State, Dye, and Semiconductor Lasers

  • Orazio Svelto


Chapter 9 considers the most important types of lasers involving high-density active media, namely solid-state, dye, and semiconductor lasers. The chapter concentrates on examples in widest use whose characteristics are representative of a whole class of lasers. The main emphasis is on the laser’s physical behavior and how this relates to general concepts developed in previous chapters. Some engineering details are also given with the aim of providing a better insight into the behavior of particular lasers. To complete the picture, data relating to laser performances (e.g., oscillating wavelength(s), output power or energy, wavelength tunability, etc.) are also included to suggest laser applications. The following items are generally covered for each laser: Relevant energy levels, excitation mechanisms, characteristics of the laser transition, engineering details of the laser’s structure(s), characteristics of the output beam, and applications.


Pump Power Active Layer Semiconductor Laser Laser Action Slope Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Systems (CRC Press, 1996 ).Google Scholar
  2. 2.
    T. H. Maiman, Stimulated Optical Radiation in Ruby Masers, Nature 187, 493 (1960).ADSCrossRefGoogle Scholar
  3. 3.
    T. H. Maiman, Optical Maser Action in Ruby, Brit. Commun. Electron. 7, 674 (1960).Google Scholar
  4. 4.
    W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer Berlin, 1996), Sects. 2.2, 3. 6. 1.Google Scholar
  5. 5.
    Ref. 4, Sects. 2.3.1., 3.6.3.Google Scholar
  6. 6.
    E. Snitzer and G. C. Young, Glass Lasers, in Lasers,vol. 2 (A. K. Levine, ed.) (Marcel Dekker, NY. 1968), Chap. 2.Google Scholar
  7. 7.
    Ref. 4, Sect. 2.3.4.Google Scholar
  8. 8.
    T. Y. Fan, Diode-Pumped Solid-State Lasers, in Laser Sources and Applications ( A. Miller and D. M. Finlayson, eds.) ( Institute of Physics, Bristol, 1996 ), pp. 163–93.Google Scholar
  9. P. Lacovara et al.,Room-Temperature Diode-Pumped Yb:YAG Laser, Opt. Letters 16, 1089 (1991).Google Scholar
  10. 10.
    H. Bruesselbach and D. S. Sumida, 69-W-average-power Yb:YAG Laser, Opt. Letters 21, 480 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    G. Huber, Solid-State Laser Materials, in Laser Sources and Applications ( A. Miller and D. M. Finlayson, eds.) ( Institute of Physics, Bristol, 1996 ), pp. 141–62.Google Scholar
  12. 12.
    E. V. Zharikov et al., Soy. J Quantum Electron. 4, 1039 (1975).Google Scholar
  13. 13.
    S. J. Hamlin, J. D. Myers, and M. J. Myers, High-Repetition Rate Q-Switched Erbium Glass Lasers, in E_vesafe Lasers: Components, Systems, and Applications (A. M. Johnson, ed.) SPIE 1419, 100 (1991).Google Scholar
  14. 14.
    S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, Diode-Pumped Bulk Erbium-Ytterbium Lasers, Appl. Phys. B63, 425 (1996).Google Scholar
  15. 15.
    D. Sliney and M. Wolbarsht, Safety with Lasers and Other Optical Sources ( Plenum. NY, 1980 ).Google Scholar
  16. 16.
    T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, Spectroscopy and Diode Laser-Pumped Operation of Tm, Ho:YAG, IEEE J Quantum Electron. QE-24, 924 (1988).Google Scholar
  17. 17.
    D. C. Hanna, Fibre Lasers, in Laser Sources and Applications ( A. Miller and D. M. Finlayson. eds.) ( Institute of Physics, Bristol, 1996 ), pp. 195–208.Google Scholar
  18. 18.
    E. Snitzer, Optical Maser Action on Nd3} in a Barium Crown Glass, Phys. Rev. Letters 7, 444 (1961).ADSCrossRefGoogle Scholar
  19. 19.
    J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, Tunable Alexandrite Lasers. IEEE J Quantum Electron. QE-16, 1302 (1980).Google Scholar
  20. 20.
    L. F. Mollenauer, Color Center Lasers, in Laser Handbook, vol. 4 ( M. L. Stitch and M. Bass, eds.) (North Holland, Amsterdam, 1985 ), pp. 143–228.Google Scholar
  21. 21.
    P. F. Moulton, Spectroscopy and Laser Characteristics of Ti:A17O3, J Opt. Soc. Am. B 3, 125 (1986).ADSCrossRefGoogle Scholar
  22. 22.
    G. Huber, Solid-State Laser Materials: Basic Properties and New Developments, in Solid-State Lasers: New Developments and Applications (M. Inguscio and R. Wallenstein, eds.) (Plenum, NY, I993 ), pp. 67–81.Google Scholar
  23. 23.
    P. Albers, E. Stark, and G. Huber, Continuous-Wave Laser Operation and Quantum Efficiency of Titanium-Doped Sapphire, J Opt. Soc. Am. B 3, 134 (1986).ADSCrossRefGoogle Scholar
  24. 24.
    S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, Laser Performance of LiSrA1F6:Cr3+ J Appl. Phys. 66, 1051 (1989).ADSCrossRefGoogle Scholar
  25. 25.
    S. A. Payne L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, LiCaAlF5:Cr3+: A Promising New Solid-State Laser Material, IEEE J Quantum Electron. QE-24, 2243 (1988).Google Scholar
  26. 26.
    Dye Lasers, 2d ed (F. P. Schäfer, ed.) ( Springer-Verlag, Berlin, 1977 ).Google Scholar
  27. 27.
    H. D. Försterling and H. Kuhn, Physikalische Chemie in Experimenten. Ein Praktikum (Verlag Chemie. Weinheim, Germany 1971 ).Google Scholar
  28. 28.
    J. T. Verdeyen, Laser Electronics, 3d ed. (Prentice-Hall, Englewood Cliffs, NJ, 1995), Fig. 10. 19.Google Scholar
  29. 29.
    P. P. Sorokin and J. R. Lankard, Stimulated Emission Observed from an Organic Dye. Chloro-Aluminum Phtalocyanine, IBM J Res. Dee 10, 162 (1966).CrossRefGoogle Scholar
  30. 30.
    F. P. Schafer, F. P. W. Schmidt, and J. Volze, Organic Dye Solution Laser, Appl. Phys. Letters 9, 306 (1966).ADSCrossRefGoogle Scholar
  31. 31.
    Semiconductor Lasers: Past, Present, Future (G. P. Agrawal, ed.) (AIP, Woodbury, NY. 1995).Google Scholar
  32. 32.
    G. P. Agrawal and N. K. Dutta, Long-Wavelength Semiconductor Lasers ( Chapman and Hall, NY, 1986 ).CrossRefGoogle Scholar
  33. 33.
    N. G. Basov, O. N. Krokhin, and Y. M. Popov, Production of Negative Temperature States in p-n Junctions of Degenerate Semiconductors, Journal Exp. Theoret. Physics 40, 1320 (1961).Google Scholar
  34. 34.
    R. N. Hall, G. E. Fenner. J. D. Kinhsley, F. H. Dills, and G. Lasher, Coherent Light Emission from GaAs Junctions. Phys. Rev. Letters 9, 366 (1962).ADSCrossRefGoogle Scholar
  35. 35.
    M. I. Nathan. W. P. Dumke, G. Burns, F. H. Dills, and G. Lasher, Stimulated Emission of Radiation from GaAs p-n Junctions, Appl. Phys. Letters 1. 62 (1962).ADSCrossRefGoogle Scholar
  36. 36.
    N. Holonyak, Jr. and S. F. Bevacqua, Coherent (Visible) Light Emission from Ga(As:_,P,) Junctions, Appl. Phis. Letters 1, 82 (1962).Google Scholar
  37. 37.
    T. M. Quist, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, R. H. Rediker, and H. J. Zeiger, Semiconductor Maser of GaAs, Appl. Phys. Letters 1, 91 (1962).ADSCrossRefGoogle Scholar
  38. 38.
    Z. I. Alferov, V. M. Andreev, V. I. Korolkov, E. L. Portnoi, and D. N. Tretyakov, Coherent Radiation of Epitaxial Heterojunction Structures in the AlAs-GaAs System, Soviet. Phys. Semicond. 2, 1289 (1969).Google Scholar
  39. 39.
    I. Hayashi, M. B. Panish, and P. W. Foy, A Low-Threshold Room-Temperature Injection Laser, IEEE J Quantum Electron. QE-5, 211 (1969).Google Scholar
  40. 40.
    H. Kressel and H. Nelson, Close Confinement Gallium Arsenide p-n Junction Laser with Reduced Optical Losses at Room Temperature, RCA Rev. 30, 106 (1969).Google Scholar
  41. 41.
    N. Chinone, H. Nakashima, I. Ikushima, and R. Ito, Semiconductor Lasers with a Thin Active Layer (0.1 inn) for Optical Communications, Appl. Opt. 17. 311 (1978).ADSCrossRefGoogle Scholar
  42. 42.
    D. Botez, Analytical Approximation of the Radiation Confinement Factor for the TE0 Mode of a DoubleHeterojunction Laser, IEEE J Quantum Electron. QE-14, 230 (1978).Google Scholar
  43. 43.
    J. J. Coleman. Quantum-Well Heterostructure Lasers, in Semiconductor Lasers: Past, Present, Future (G. P. Agrawal. ed.) (AIP, Woodbury, NY, 1995), Fig. 1. 6.Google Scholar
  44. 44.
    Quantum Well Lasers (Peter S. Zory, ed.) (Academic Press, Boston, 1993).Google Scholar
  45. 45.
    Ref. 32. Figs. 9.8. 9.10.Google Scholar
  46. 46.
    Ref. 44. Chap. 3.Google Scholar
  47. 47.
    H. Kogelnik and C. V. Shank, Stimulated Emission in a Periodic Structure, Appl. Phys. Letters 18, 152 (1971).ADSCrossRefGoogle Scholar
  48. 48.
    Ref. 32. Chap. 7.Google Scholar
  49. 49.
    N. Chinonc and M. Okai, Distributed Feed-Back Semiconductor Lasers, in Semiconductor Lasers: Past, Present, Future (G. P. Agrawal, ed.) (AIP, Woodbury, NY, 1995), Chap. 2, pp. 28–70.Google Scholar
  50. 50.
    H. A. Haus and C. V. Shank, Antisymmetric Taper of Distributed Feedback Lasers, IEEE J Quantum Electron. QE-12, 532 (1976).Google Scholar
  51. 51.
    C. J. Chang-Hasnain, Vertical-Cavity Surface-Emitting Lasers, in Semiconductor Lasers: Past, Present, Future (G. P. Agrawal, ed.) (AIP, Woodbury, NY, 1995), Chap. 4, pp. 110–44.Google Scholar
  52. 52.
    C. J. Chang-Hasnain, J. P. Harbison, C.-H. Zah, M. W. Maeda, L. T. Florenz, N. G. Stoffel. and T.-P. Lee, Multiple Wavelength Tunable surface-Emitting Laser Array, IEEE.1 Quantum Electron. QE-27, 1368 (1991).Google Scholar
  53. 53.
    G.-I. Hatakoshi, Visible Semiconductor Lasers, in Semiconductor Lasers: Past, Present, Future (G. P. Agrawal, ed.) (AIP, Woodbury, NY, 1995), Chap. 6, pp. 181–207.Google Scholar
  54. 54.
    S. Nakamura et al., Japn. J Appl. Phys. 35 L74 (1994).Google Scholar
  55. 55.
    P. Moulton, New Developments in Solid-State Lasers, Laser Focus 14. 83 (May 1983).Google Scholar
  56. 56.
    J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho. Science 264, 553 (1994).ADSCrossRefGoogle Scholar
  57. 57.
    M. Bass, T. F. Deutsch, and M. J. Weber. Dye Lasers, in Lasers, Vol. 3 ( A. K. Levine and A. De Maria, eds.) (Marcel Dekker, NY, 1971 ) p. 275.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Orazio Svelto
    • 1
  1. 1.Polytechnic Institute of Milan and National Research CouncilMilanItaly

Personalised recommendations