Transient Laser Behavior

  • Orazio Svelto


Chapter 8 examines a few cases where the pump rate and/or cavity losses are time-dependent. We also consider situations when a nonlinear optical element, such as a saturable absorber, is inserted in the laser cavity, where nonlinearity causes the laser to depart from stable cw operation. In such cases we are dealing with transient laser behavior. The transient cases we consider can be divided into two categories: (1) Cases, such as relaxation oscillations, Q-switching, gain-switching, and cavity-dumping, where, ideally, a single-mode laser is involved; these can be described by a rate equation treatment. (2) Cases involving many modes, e.g., mode-locking, which requires a different treatment, such as a description in terms of either the fields of all the oscillating modes (frequency domain description) or in terms of a self-consistent circulating pulse within the cavity (time domain description).


Photon Number Laser Cavity Saturable Absorber Gain Medium Population Inversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Statz and G. de Mars, Transients and Oscillation Pulses in Masers. in Quantum Electronics (C. H. Townes. ed.) (Columbia Univ. Press, New York, 1960 ), p. 530.Google Scholar
  2. 2.
    R. Dunsmuir, Theory of Relaxation Oscillations in Optical Masers, J Electron. Control, 10, 453 (1961).Google Scholar
  3. 3.
    D. F. Nelson and W. S. Boyle, A Continuously Operating Ruby Optical Maser, Appt Optics, 1, 181 (1962).ADSGoogle Scholar
  4. 4.
    N. B. Abraham. P. Mandel, and L. M. Narducci, Dynamical Instabilities and Pulsations in Lasers. in Progress in Optics VOL XXV ( Emil Wolf, ed.) ( North-Holland, Amsterdam, 1988 ), pp. 3–167.Google Scholar
  5. 5.
    M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics ( Addison-Wesley, London. 1974 ).Google Scholar
  6. 6.
    C. L. Tang. H. Statz, and G. de Mars, Spectral Output and Spiking Behavior of Solid-State Lasers, J Appl. Plus., 34, 2289 (1963).ADSGoogle Scholar
  7. 7.
    K. Otsuka et al.,Alternate Time Scale in Multimode Lasers, Phys. Rev.,46, 1692 (1992).Google Scholar
  8. 8.
    R. W. Hellwarth, Control of Fluorescent Pulsations, in Advances in Quantum Electronics (J. R. Singer, ed.) ( Columbia Univ. Press, New York, 1961 ), pp. 334–341.Google Scholar
  9. 9.
    W. Koechner, Solid-State Laser Engineering, 4th ed., Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1996 ), Chap. 8.Google Scholar
  10. 10.
    A. Yariv, Optical Electronics,4th cd. (Saunders College Publ., Fort Worth, 1991), Chap. 12.Google Scholar
  11. 11.
    W. R. Sooy, The Natural Selection of Modes in a Passive Q-Switched Laser, Appl. Phis. Lett., 7, 36 (1965).ADSGoogle Scholar
  12. 12.
    W. G. Wagner and B. A. Lengyel, Evolution of the Giant Pulse in a Laser, J Appl. Phys., 34, 2040 (1963).ADSCrossRefGoogle Scholar
  13. 13.
    W. Koechner, Solid-State Laser Engineering,Vol. 1, Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1976), Chap. 11, adapted from Fig. 11.23.Google Scholar
  14. 14.
    L. W. Casperson, Analytical Modeling of Gain-Switched Lasers. I. Laser Oscillators.. 1 Appl. Phys., 47, 45–55 (1976).Google Scholar
  15. 15.
    A. E. Siegman, Lasers (Oxford University Press, Oxford, 1986), Chap. 27 and 28.Google Scholar
  16. 16.
    Reference 15, Section 27.5.Google Scholar
  17. 17.
    D. J. Kuizenga and A. E. Siegman, FM and AM Mode-Locking of the Homogeneous Laser Pair I: Theory. IEEE J Quantum Electron., QE-6, 694 (1970).Google Scholar
  18. 18.
    H. Haus. A Theory of Forced Mode-Locking, IEEE J Quantum Electron.. QE-11, 323 (1975).Google Scholar
  19. 19.
    H. Haus. Theory of Mode Locking with a Fast Saturable Absorber,. 1 Appl. Phys.. 46. 3049 (1975).CrossRefGoogle Scholar
  20. 20.
    U. Keller. Ultrafast All-Solid-State Laser Technology, App/. Phvs. B. 58.. 347 (1994).Google Scholar
  21. 21.
    D. E. Spence. P. N. Kean. and W. Sibbett, 60-fs Pulse Generation from a Self-Mode-Locked Ti:Sapphire Laser. Opt. Letters, 16, 42 (1991).Google Scholar
  22. 22.
    M. Fiché, Beam Reshaping and Self-Mode-Locking in Nonlinear Laser Resonators, Opt. Commun.. 86. 156 (1991).ADSCrossRefGoogle Scholar
  23. 23.
    G. H. C. New, Pulse Evolution in Mode-Locked Quasi-Continuous Lasers, IEEE J Quantum Electron.. QE-10. 115 (1974).Google Scholar
  24. 24.
    G. P. Agrawaal, Nonlinear Fiber Optics, 2nd ed. (Academic Press. San Diego, 1995). Section 3. 3.Google Scholar
  25. 25.
    R. L. Fork. O. E. Martinez. and J. P. Gordon, Negative Dispersion Using Pairs of Prisms. Opt. Lett.. 9, 150 (1984).Google Scholar
  26. 26.
    R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, Chirped Multilayer Coatings for Broadband Dispersion Control in Femtosecond Lasers, Opt. Lett., 19, 201 (1994).ADSCrossRefGoogle Scholar
  27. 27.
    Reference 24, Chapter 5.Google Scholar
  28. 28.
    H. A. Haus, J. G. Fujimoto, and E. P. Ippen, Structures for Additive Pulse Mode Locking,. 1 Opt. Soc. Am. B. 8, 2068 (1991).ADSCrossRefGoogle Scholar
  29. 29.
    C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, Ultrabroadband Femtosecond Lasers, IEEE) Quantum Electron.,QE-30, 1100 (1994).Google Scholar
  30. 30.
    J. A. Valdmanis, R. L. Fork, and J. P. Gordon, Generation of Optical Pulses as Short as 27 Femtosecond Directly from a Laser Balancing Self-Phase Modulation, Group-Velocity Dispersion. Saturable Absorption. and Gain Saturation, Opt. Lett., 10, 131 (1985).Google Scholar
  31. 31.
    U. Keller et al.,Semiconductor Saturable Absorber Mirrors (SESAMs) for Femtosecond to Nanosecond Pulse Generation in Solid-State Lasers, J Select. Topics Quantum Electron.,Dec 1996.Google Scholar
  32. 32.
    H. A. Haus. Parameter Ranges for cw Passive Mode Locking, IEEE.1 Quantum Electron., QE-12, 169 (1976).Google Scholar
  33. F. X. Kärtner et al.,Control of Solid-State Laser Dynamics by Semiconductor Devices. Opt. Engineering,34 2024 (1995).Google Scholar
  34. 33.
    R. L. Fork, I. Greene, and C. V. Shank, Generation of Optical Pulses Shorter than 0.1 ps by Colliding Pulse Mode Locking, Appl. Phys. Lett., 38, 671 (1991).Google Scholar
  35. 34.
    G. Cerullo, S. De Silvestri, and V. Magni, Self-Starting Kerr Lens Mode Locking of a Ti:Sapphire Laser. Opt. Letters, 19, 1040 (1994).ADSCrossRefGoogle Scholar
  36. 35.
    A. Sting], M. Lenzner, Ch. Spielmann, F. Krausz, and R. Szipöcs, Sub-l0-fs Mirror-Controlled Ti:Sapphire Laser, Opt. Lett.. 20, 602 (1995).ADSCrossRefGoogle Scholar
  37. 36.
    D. Jung et al.,Self-Starting 6.5-fs Pulses from a Ti:Sapphire Laser, Opt. Lett.,22 1009 (1997).Google Scholar
  38. 37.
    Reference 9, Section 8.6.Google Scholar
  39. 38.
    D. C. Hanna, B. Luther-Davies, and R. C. Smith, Single Longitudinal Mode Selection of High Power Actively Q-Switched Lasers, Opto-Electronics, 4, 249 (1972).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Orazio Svelto
    • 1
  1. 1.Polytechnic Institute of Milan and National Research CouncilMilanItaly

Personalised recommendations