Skip to main content

Transient Laser Behavior

  • Chapter
Principles of Lasers

Abstract

Chapter 8 examines a few cases where the pump rate and/or cavity losses are time-dependent. We also consider situations when a nonlinear optical element, such as a saturable absorber, is inserted in the laser cavity, where nonlinearity causes the laser to depart from stable cw operation. In such cases we are dealing with transient laser behavior. The transient cases we consider can be divided into two categories: (1) Cases, such as relaxation oscillations, Q-switching, gain-switching, and cavity-dumping, where, ideally, a single-mode laser is involved; these can be described by a rate equation treatment. (2) Cases involving many modes, e.g., mode-locking, which requires a different treatment, such as a description in terms of either the fields of all the oscillating modes (frequency domain description) or in terms of a self-consistent circulating pulse within the cavity (time domain description).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Statz and G. de Mars, Transients and Oscillation Pulses in Masers. in Quantum Electronics (C. H. Townes. ed.) (Columbia Univ. Press, New York, 1960 ), p. 530.

    Google Scholar 

  2. R. Dunsmuir, Theory of Relaxation Oscillations in Optical Masers, J Electron. Control, 10, 453 (1961).

    Google Scholar 

  3. D. F. Nelson and W. S. Boyle, A Continuously Operating Ruby Optical Maser, Appt Optics, 1, 181 (1962).

    ADS  Google Scholar 

  4. N. B. Abraham. P. Mandel, and L. M. Narducci, Dynamical Instabilities and Pulsations in Lasers. in Progress in Optics VOL XXV ( Emil Wolf, ed.) ( North-Holland, Amsterdam, 1988 ), pp. 3–167.

    Google Scholar 

  5. M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics ( Addison-Wesley, London. 1974 ).

    Google Scholar 

  6. C. L. Tang. H. Statz, and G. de Mars, Spectral Output and Spiking Behavior of Solid-State Lasers, J Appl. Plus., 34, 2289 (1963).

    ADS  Google Scholar 

  7. K. Otsuka et al.,Alternate Time Scale in Multimode Lasers, Phys. Rev.,46, 1692 (1992).

    Google Scholar 

  8. R. W. Hellwarth, Control of Fluorescent Pulsations, in Advances in Quantum Electronics (J. R. Singer, ed.) ( Columbia Univ. Press, New York, 1961 ), pp. 334–341.

    Google Scholar 

  9. W. Koechner, Solid-State Laser Engineering, 4th ed., Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1996 ), Chap. 8.

    Google Scholar 

  10. A. Yariv, Optical Electronics,4th cd. (Saunders College Publ., Fort Worth, 1991), Chap. 12.

    Google Scholar 

  11. W. R. Sooy, The Natural Selection of Modes in a Passive Q-Switched Laser, Appl. Phis. Lett., 7, 36 (1965).

    ADS  Google Scholar 

  12. W. G. Wagner and B. A. Lengyel, Evolution of the Giant Pulse in a Laser, J Appl. Phys., 34, 2040 (1963).

    Article  ADS  Google Scholar 

  13. W. Koechner, Solid-State Laser Engineering,Vol. 1, Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1976), Chap. 11, adapted from Fig. 11.23.

    Google Scholar 

  14. L. W. Casperson, Analytical Modeling of Gain-Switched Lasers. I. Laser Oscillators.. 1 Appl. Phys., 47, 45–55 (1976).

    Google Scholar 

  15. A. E. Siegman, Lasers (Oxford University Press, Oxford, 1986), Chap. 27 and 28.

    Google Scholar 

  16. Reference 15, Section 27.5.

    Google Scholar 

  17. D. J. Kuizenga and A. E. Siegman, FM and AM Mode-Locking of the Homogeneous Laser Pair I: Theory. IEEE J Quantum Electron., QE-6, 694 (1970).

    Google Scholar 

  18. H. Haus. A Theory of Forced Mode-Locking, IEEE J Quantum Electron.. QE-11, 323 (1975).

    Google Scholar 

  19. H. Haus. Theory of Mode Locking with a Fast Saturable Absorber,. 1 Appl. Phys.. 46. 3049 (1975).

    Article  Google Scholar 

  20. U. Keller. Ultrafast All-Solid-State Laser Technology, App/. Phvs. B. 58.. 347 (1994).

    Google Scholar 

  21. D. E. Spence. P. N. Kean. and W. Sibbett, 60-fs Pulse Generation from a Self-Mode-Locked Ti:Sapphire Laser. Opt. Letters, 16, 42 (1991).

    Google Scholar 

  22. M. Fiché, Beam Reshaping and Self-Mode-Locking in Nonlinear Laser Resonators, Opt. Commun.. 86. 156 (1991).

    Article  ADS  Google Scholar 

  23. G. H. C. New, Pulse Evolution in Mode-Locked Quasi-Continuous Lasers, IEEE J Quantum Electron.. QE-10. 115 (1974).

    Google Scholar 

  24. G. P. Agrawaal, Nonlinear Fiber Optics, 2nd ed. (Academic Press. San Diego, 1995). Section 3. 3.

    Google Scholar 

  25. R. L. Fork. O. E. Martinez. and J. P. Gordon, Negative Dispersion Using Pairs of Prisms. Opt. Lett.. 9, 150 (1984).

    Google Scholar 

  26. R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, Chirped Multilayer Coatings for Broadband Dispersion Control in Femtosecond Lasers, Opt. Lett., 19, 201 (1994).

    Article  ADS  Google Scholar 

  27. Reference 24, Chapter 5.

    Google Scholar 

  28. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, Structures for Additive Pulse Mode Locking,. 1 Opt. Soc. Am. B. 8, 2068 (1991).

    Article  ADS  Google Scholar 

  29. C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, Ultrabroadband Femtosecond Lasers, IEEE) Quantum Electron.,QE-30, 1100 (1994).

    Google Scholar 

  30. J. A. Valdmanis, R. L. Fork, and J. P. Gordon, Generation of Optical Pulses as Short as 27 Femtosecond Directly from a Laser Balancing Self-Phase Modulation, Group-Velocity Dispersion. Saturable Absorption. and Gain Saturation, Opt. Lett., 10, 131 (1985).

    Google Scholar 

  31. U. Keller et al.,Semiconductor Saturable Absorber Mirrors (SESAMs) for Femtosecond to Nanosecond Pulse Generation in Solid-State Lasers, J Select. Topics Quantum Electron.,Dec 1996.

    Google Scholar 

  32. H. A. Haus. Parameter Ranges for cw Passive Mode Locking, IEEE.1 Quantum Electron., QE-12, 169 (1976).

    Google Scholar 

  33. F. X. Kärtner et al.,Control of Solid-State Laser Dynamics by Semiconductor Devices. Opt. Engineering,34 2024 (1995).

    Google Scholar 

  34. R. L. Fork, I. Greene, and C. V. Shank, Generation of Optical Pulses Shorter than 0.1 ps by Colliding Pulse Mode Locking, Appl. Phys. Lett., 38, 671 (1991).

    Google Scholar 

  35. G. Cerullo, S. De Silvestri, and V. Magni, Self-Starting Kerr Lens Mode Locking of a Ti:Sapphire Laser. Opt. Letters, 19, 1040 (1994).

    Article  ADS  Google Scholar 

  36. A. Sting], M. Lenzner, Ch. Spielmann, F. Krausz, and R. Szipöcs, Sub-l0-fs Mirror-Controlled Ti:Sapphire Laser, Opt. Lett.. 20, 602 (1995).

    Article  ADS  Google Scholar 

  37. D. Jung et al.,Self-Starting 6.5-fs Pulses from a Ti:Sapphire Laser, Opt. Lett.,22 1009 (1997).

    Google Scholar 

  38. Reference 9, Section 8.6.

    Google Scholar 

  39. D. C. Hanna, B. Luther-Davies, and R. C. Smith, Single Longitudinal Mode Selection of High Power Actively Q-Switched Lasers, Opto-Electronics, 4, 249 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Svelto, O. (1998). Transient Laser Behavior. In: Principles of Lasers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6266-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6266-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3289-1

  • Online ISBN: 978-1-4757-6266-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics