Continuous Wave Laser Behavior

  • Orazio Svelto

Abstract

In previous chapters we discussed several features of the components that make up a laser. These are the laser medium itself, whose interaction with an em wave is considered in Chaps. 2 and 3, the passive optical resonator (Chap. 5), and the pumping system (Chap. 6). In this chapter, we will use results from these earlier chapters to develop the theoretical background required to describe cw laser behavior. The case of transient laser behavior is considered in Chap. 8. The theory developed here uses the so-called rate equation approximation and laser equations are derived on the basis of a simple notion that there should be a balance between the total number of atoms undergoing a transition and the total number of photons being created or annihilated.(1, 2) This theory provides a rather simple and intuitive picture of laser behavior; furthermore it gives sufficiently accurate results for most practical purposes. For a more refined treatment one should use either the semiclassical approach (where matter is quantized while em radiation is treated classically, i.e., through Maxwell's equations) or the full quantum-electrodynamics approach (where both matter and radiation are quantized). We refer the reader elsewhere for these more advanced treatments.(3)

Keywords

Pump Power Cavity Length Lower Laser Level Slope Efficiency Pump Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Staiz and G. de Mars, Transients and Oscillation Pulses in Masers, in Quantum Electronics ( C. H. Townes ed.) ( Columbia Univ. Press, New York, 1960 ), pp. 530–37.Google Scholar
  2. 2.
    R. Dunsmuir, Theory of Relaxation Oscillations in Optical Masers,. 1 Electron. Control 10, 453 (1961).Google Scholar
  3. 3.
    M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics ( Addison-Wesley, London, 1974 ).Google Scholar
  4. 4.
    R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969), Chap. 6. Sect. 6. 4. 2.Google Scholar
  5. 5.
    W. W. Rigrod, Saturation Effects in High-Gain Lasers, J Appl. Phys. 36, 2487 (1965).ADSCrossRefGoogle Scholar
  6. 6.
    L. W. Casperson, Laser Power Calculations: Sources of Error, Appl. Optics 19, 422 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    W. Koechner, Solid-State Laser Engineering, vol. 1, Springer Series in Optical Sciences, 4th ed. (Springer-Verlag, Berlin, 1996), Chap. 3, adapted from Fig. 3. 21.Google Scholar
  8. 8.
    Ref. 7. Chap. 3, Fig. 3. 22.Google Scholar
  9. 9.
    D. Findlay and R. A. Clay, Measurement of Internal Losses in 4-Level Lasers, Phys. Lett. 20, 277 (1966).ADSCrossRefGoogle Scholar
  10. 10.
    Private communication, Istituto di Ricerca per le Tecnologie Meccaniche, Vico Canavese, Torino, Italy.Google Scholar
  11. 11.
    M. C. Fowler, Quantitative Analysis of the Dependence of CO2 Laser Performance on Electrical Discharge Properties, Appl. Phys. Letters 18, 175 (1971).ADSCrossRefGoogle Scholar
  12. 12.
    Performance Characteristics of a 10-kW Industrial CO, Laser System, Appl. Opt. 13, 1959 (1974).Google Scholar
  13. 13.
    P. F. Moulton, An Investigation of the Co:MgF2 Laser System, IEEE J Quant. Electr QE-21. 1582 (1985).Google Scholar
  14. 14.
    V. Evtuhov and A. E. Siegman, A Twisted-Mode Technique for Obtaining Axially Uniform Energy Density in a Laser cavity, Appl. Opt. 4, 142 (1965).ADSCrossRefGoogle Scholar
  15. 15.
    J. Berger et al.,370-mW, 1.06-pm, cw TEM00 Output from a Nd:YAG Laser Rod End-Pumped by a Monolithic Diode Array, Electr. Letters 23, 669 (1987).Google Scholar
  16. 16.
    W. P. Risk, Modeling of Longitudinally Pumped Solid-State Lasers Exhibiting Reabsorption Losses, J Opt. Soc. Am. B 5, 1412 (1988).ADSCrossRefGoogle Scholar
  17. 17.
    T. Y. Fan and R. L. Byer, Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd:YAG Laser, IEEE J Quant. Elect: QE-23, 605 (1987).Google Scholar
  18. 18.
    P. Lacovara et al.,Room Temperature Diode-Pumped Yb:YAG Laser, Opt. Letters 16. 1089 (1991).Google Scholar
  19. 19.
    A. Yariv, Energy and Power Considerations in Injection and Optically Pumped Lasers, Proc. IEEE 51, 1723 (1963).CrossRefGoogle Scholar
  20. 20.
    C. L. Tang, H. Statz, and G. de Mars, Spectral Output and Spiking Behavior of Solid-State Lasers, J Appl. Phys. 34, 2289 (1963).ADSCrossRefGoogle Scholar
  21. 21.
    T. J. Kane and R. L. Byer, Monolithic, Unidirectional, Single-Mode Nd:YAG Ring Laser, Opt. Lett. 10, 65 (1985).ADSCrossRefGoogle Scholar
  22. 22.
    A. E. Siegman, Lasers (Oxford University, Cambridge, 1986), Chap. 12, Sect. 12. 2.Google Scholar
  23. 23.
    A. Yariv, Optical Electronics (Saunders College Publ., Fort Worth, TX, 1991), Sect. 10. 7.Google Scholar
  24. 24.
    A. L. Schawlow and and C. H. Townes, Infrared and Optical Masers, Phys. Rev 112, 1940 (1958).ADSCrossRefGoogle Scholar
  25. 25.
    C. H. Henry, Theory of Linewidth of Semiconductor Lasers, IEEE J Quant. Electr. QE-18, 259 (1982).Google Scholar
  26. 26.
    T. Day, E. K. Gustafson, and R. L. Byer, Subhertz Relative Frequency Stabilization of Two Diode Laser-Pumped Nd:YAG Lasers Locked to a Fabry-Perot Interferometer, IEEEJ Quant. Elect,: QE-28, 1 106 (1992).Google Scholar
  27. 27.
    D. K. Owens and R. Weiss, Measurement of the Phase Fluctuation in a He-Ne Zeeman Laser. Rev. Sci. Instruments 45, 1060 (1974).CrossRefGoogle Scholar
  28. 28.
    Wolfgang Demtröder, Laser Spectroscopy, 2nd ed. ( Springer-Verlag, Berlin, 1996 ), Chap. 7.Google Scholar
  29. 29.
    R. W. T. Dreyer et al.. Laser Phase and Frequency Stabilization Using an Optical Resonator, Appl. Phys. B 31, 97 (1983).ADSCrossRefGoogle Scholar
  30. 30.
    N. Uekara and K. Ueda, 193-mHz Beat Line Width of Frequency-Stabilized Laser-Diode-Pumped Nd:YAG Ring Lasers, Opt. Letters 18, 505 (1993).ADSCrossRefGoogle Scholar
  31. 31.
    Introduction to Diode-Pumped Solid-State Lasers, LIGHTWAVE Electronics Corp. Techn. Information N. I (1993).Google Scholar
  32. 32.
    Kenju Otsuka, Winner-Takes-All and Antiphase States in Multimode Lasers, Phys. Rev. Letters 67, 1090 (1991).ADSCrossRefGoogle Scholar
  33. 33.
    G. P. Agrawal and N. K. Dotta, Long-Wavelength Semiconductor Lasers (Chapman and Hall, New York, 1986), Fig. 6. 11.Google Scholar
  34. 34.
    Ref. 7, Sect. 7.1.1. and Fig. 7.5.Google Scholar
  35. 35.
    Ref. 22, Chap. 17, Sect. 17.5, 17. 6.Google Scholar
  36. 36.
    D. Golla et al.,62-W cw TEM00 Mode Nd:YAG Laser Side Pumped by Fiber-Coupled Diode Lasers, Opt. Letters 21, 210 (1996).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Orazio Svelto
    • 1
  1. 1.Polytechnic Institute of Milan and National Research CouncilMilanItaly

Personalised recommendations