Diabetes Prevention

  • Asha Thomas-Geevarghese
  • Kevan C. Herold


Studies carried out over the past three decades in animal models and in patients suggest that Type 1 diabetes mellitus is an autoimmune disease. Elsewhere, in Chapter V, this work is reviewed and current concepts of disease pathogenesis are discussed. These studies indicate that the Type 1 diabetes is due to the T cell mediated destruction of the beta cells in the islets of Langerhans. The risk of diabetes in the general population in North America is approximately 12.5/100,000, although this number has been increasing.1 The risk of Type 1 diabetes is higher among families with another relative with Type 1 diabetes. The genetic locus most highly linked to the disease is the major histocompatibility locus (MHC), and over 90% of Caucasian individuals express either HLA DR3 and/or DR.2 Prediction of future diabetes, however, is not possible on a genetic basis alone. For example, the concordance rate for identical twins is < 50%, indicating that either environmental or developmental events (such as T cell development) affect the progression of diabetes.


Beta Cell Conjugate Linoleic Acid Impaired Glucose Tolerance Glutamic Acid Decarboxylase Diabetes Prevention Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    LaPorte RB, Chang Y-F. Prevalence and incidence of insulin-dependent diabetes, In “Diabetes in America,” 2nd ed. National Diabetes Data Group, National Institutes of Health. Publication No. 95–1468, 1995.Google Scholar
  2. 2.
    Castano L, Eisenbarth GS. Type-I diabetes: a chronic autoimmune disease of human, mouse, and rat. Annu Rev Immunol 8: 647–79, 1990.PubMedCrossRefGoogle Scholar
  3. 3.
    Hagopian WA, Sanjeevi CB, Kockum I, Landin-Olsson M, Karlsen AE, Sundkvist G, Dahlquist G, Palmer J, Lernmark A. Glutamate decarboxylase-, insulin-, and islet cell-antibodies and HLA typing to detect diabetes in a general population-based study of Swedish children. J Clin Invest 95 (4): 1505–11, 1995.PubMedCrossRefGoogle Scholar
  4. 4.
    Hagopian WA, Karlsen AE, Gottsater A, Landin-Olsson M, Grubin CE, Sundkvist G, Petersen JS, Boel E, Dyrberg T, and Lernmark A. Quantitative assay using recombinant human islet glutamic acid decarboxylase (GAD65) shows that 64K autoantibody positivity at onset predicts diabetes type. J Clin Invest 91 (1): 368–74, 1993.PubMedCrossRefGoogle Scholar
  5. 5.
    Ziegler AG, Hummel M, Schenker M, and Bonifacio E. Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB Study. Diabetes 48 (3): 460–8, 1999.PubMedCrossRefGoogle Scholar
  6. 6.
    Riley, WJ, Maclaren NK, Krischer J, Spillar RP, Silverstein HI, Schatz DA, Schwartz S, Malone J, Shah S, Vadheim C et al. A prospective study of the development of diabetes in relatives of patients with insulin-dependent diabetes. N Engl J Med 323 (17): 1167–72, 1990.PubMedCrossRefGoogle Scholar
  7. 7.
    Yu, L, Robles DT, Abiru N, Kaur P, Rewers M, Kelemen K, Eisenbarth GS. Early expression of anti-insulin autoantibodies of humans and the NOD mouse: evidence for early determination of subsequent diabetes. Proc Natl Acad Sci USA 97 (4): 1701–6, 2000.PubMedCrossRefGoogle Scholar
  8. 8.
    Eisenbarth GS, Gianani R, Yu L, Pietropaolo M, Verge CF, Chase HP, Redondo MJ, Colman P, Harrison L, and Jackson R. Dual-parameter model for prediction of type I diabetes mellitus. Proc Assoc Am Physicians 110 (2): 126–35, 1998.PubMedGoogle Scholar
  9. 9.
    Schatz D, Krischer J, Horne G, Riley W, Spillar R, Silverstein J, Winter W, Muir A, Derovanesian D, Shah S, et al. Islet cell antibodies predict insulin-dependent diabetes in United States school age children as powerfully as in unaffected relatives. J Clin Invest 93 (6): 2403–7, 1994.PubMedCrossRefGoogle Scholar
  10. 10.
    Madsbad S, Faber OK, Binder C, McNair P, Christiansen C, Transbol I. Prevalence of residual beta-cell function in insulin-dependent diabetics in relation to age at onset and duration of diabetes. Diabetes 27 (Suppl 1): 262–4, 1978.PubMedGoogle Scholar
  11. 11.
    Roder ME, Knip M, Hartling SG, Karjalainen J, Akerblom HK, and Binder C. Disproportionately elevated proinsulin levels precede the onset of insulin-dependent diabetes mellitus in siblings with low first phase insulin responses. The Childhood Diabetes in Finland Study Group. J Clin Endocrinol Metab 79 (6): 1570–5, 1994.PubMedCrossRefGoogle Scholar
  12. 12.
    O’Meara NM, Sturis J, Herold KC, Ostrega DM, Polonsky KS, Alterations in the patterns of insulin secretion before and after diagnosis of IDDM. Diabetes Care 18 (4): 568–71, 1995.PubMedCrossRefGoogle Scholar
  13. 13.
    Effect of intensive therapy on residual beta-cell function in patients with type 1 diabetes in the diabetes control and complications trial. A randomized, controlled trial. The Diabetes Control and Complications Trial Research Group. Ann Intern Med 128 (7): 517–23, 1998.CrossRefGoogle Scholar
  14. 14.
    Carlsson A, Sundkvist G, Groop L, Tuomi T. Insulin and glucagon secretion in patients with slowly progressing autoimmune diabetes (LADA). J Clin Endocrinol Metab 85 (1): 76–80, 2000.PubMedCrossRefGoogle Scholar
  15. 15.
    Delovitch TL, Singh B. The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity 7 (6): 727–38, 1997.PubMedCrossRefGoogle Scholar
  16. 16.
    Bertrand S, De Paepe M, Vigeant C, Yale JF. Prevention of adoptive transfer in BB rats by prophylactic insulin treatment. Diabetes 41 (10): 1273–7, 1992.PubMedCrossRefGoogle Scholar
  17. 17.
    Atkinson, MA, Maclaren NK, Luchetta R. Insulitis and diabetes in NOD mice reduced by prophylactic insulin therapy. Diabetes 39 (8): 933–7, 1990.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang ZJ, Davidson L, Eisenbarth G, Weiner HL. Suppression of diabetes in nonobese diabetic mice by oral administration of porcine insulin. Proc Natl Acad Sci U S A 88 (22): 10252–6, 1991.PubMedCrossRefGoogle Scholar
  19. 19.
    Karounos DG, Bryson JS, Cohen DA. Metabolically inactive insulin analog prevents type I diabetes in prediabetic NOD mice. J Clin Invest 100 (6): 1344–8, 1997PubMedCrossRefGoogle Scholar
  20. 20.
    Evavold BD, Sloan-Lancaster J, Allen PM. Tickling the TCR: selective T-cell functions stimulated by altered peptide ligands. Immunol Today 14(12):602–9, 199.Google Scholar
  21. 21.
    Lee HC, Kim SJ, Kim KS, Shin HC, Yoon JW. Remission in models of type 1 diabetes by gene therapy using a single-chain insulin analogue. Nature 408 (6811): 483–8, 2000PubMedCrossRefGoogle Scholar
  22. 22.
    Yoon JW, Yoon CS, Lim HW, Huang QQ, Kang Y, Pyun KH, Hirasawa K, Sherwin RS, Jun HS. Control of autoimmune diabetes in NOD mice by GAD expression or suppression in beta cells. Science 284(5417):1183–7, 199.Google Scholar
  23. 23.
    Tian J, Clare-Salzler M, Herschenfeld A, Middleton B, Newman D, Mueller R, Arita S, Evans C, Atkinson MA, Mullen Y, Sarvetnick N, Tobin AJ, Lehmann PV, Kaufman DL.Modulating autoimmune responses to GAD inhibits disease progression and prolongs islet graft survival in diabetes-prone mice. Nat Med 2 (12): 1348–53, 1996.PubMedCrossRefGoogle Scholar
  24. 24.
    Quintana FJ, Rotem A, Carmi P, Cohen IR. Vaccination with empty plasmid DNA or CpG oligonucleotide inhibits diabetes in nonobese diabetic mice: modulation of spontaneous 60-kDa heat shock protein autoimmunity. J Immunol 165 (11): 6148–55, 2000.PubMedGoogle Scholar
  25. 25.
    Birk OS, Cohen IR. T-cell autoimmunity in type 1 diabetes mellitus. Curr Opin Immunol 5 (6): 903–9, 1993.PubMedCrossRefGoogle Scholar
  26. 26.
    Birk OS, Douek DC, Elias D, Takacs K, Dewchand H, Gur SL, Walker MD, Van der Zee R, Cohen IR, Altmann DM. A role of Hsp60 in autoimmune diabetes: analysis in a transgenic model. Proc Natl Acad Sci U S A 93 (3): 1032–7, 1996.PubMedCrossRefGoogle Scholar
  27. 27.
    Rothe H, Kolb H. Strategies of protection from nitric oxide toxicity in islet inflammation. J Mol Med 77 (1): 40–4, 1999.PubMedCrossRefGoogle Scholar
  28. 28.
    Brod SA, Malone M, Darcan S, Papolla M, Nelson L. Ingested interferon alpha suppresses type I diabetes in non-obese diabetic mice. Diabetologia 41(10):1227–32, 199.Google Scholar
  29. 29.
    Chatenoud L, Thervet E, Primo J, Bach JF. Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc Natl Acad Sci U S A 91 (1): 123–7, 1994.PubMedCrossRefGoogle Scholar
  30. 30.
    Chatenoud L, Primo J, Bach JF. CD3 antibody-induced dominant self tolerance in overtly diabetic NOD mice. J Immunol 158 (6): 2947–54, 1997.PubMedGoogle Scholar
  31. 31.
    Fox CJ, Danska JS. IL-4 expression at the onset of islet inflammation predicts nondestructive insulitis in nonobese diabetic mice. J Immunol 158 (5): 2414–24, 1997.PubMedGoogle Scholar
  32. 32.
    Stiller CR, Dupre J, Gent M, Jenner MR, Keown PA, Laupacis A, Martell R, Rodger NW, von Graffenried B, WolfeBM. Effects of cyclosporine immunosuppression in insulin-dependent diabetes mellitus of recent onset. Science 223 (4643): 1362–7, 1984.PubMedCrossRefGoogle Scholar
  33. 33.
    Bougneres PF, Carel JC, Castano L, Boitard C, Gardin JP, Landais P, Hors J, Mihatsch MJ, Paillard M, Chaussain JL et al. Factors associated with early remission of type I diabetes in children treated with cyclosporine. N Engl J Med 318 (11): 663–70, 1988.PubMedCrossRefGoogle Scholar
  34. 34.
    De Filippo G, Carel JC, Boitard C, Bougneres PF. Long-term results of early cyclosporin therapy in juvenile IDDM. Diabetes 45 (1): 101–4, 1996.PubMedCrossRefGoogle Scholar
  35. 35.
    Silverstein J, Maclaren N, Riley W, Spillar R, Radjenovic D, Johnson S. Immunosuppression with azathioprine and prednisone in recent-onset insulin-dependent diabetes mellitus. N Engl J Med 319 (10): 599–604, 1988.PubMedCrossRefGoogle Scholar
  36. 36.
    Eisenbarth GS, Srikanta S, Jackson R, Rabinowe S, Dolinar R, Aoki T, Morris MA. Anti-thymocyte globulin and prednisone immunotherapy of recent onset type 1 diabetes mellitus. Diabetes Res 2 (6): 271–6, 1985.PubMedGoogle Scholar
  37. 37.
    Buckingham BA, Sandborg CI. A randomized trial of methotrexate in newly diagnosed patients with type 1 diabetes mellitus. Clin Immunol 96 (2): 86–90, 2000.PubMedCrossRefGoogle Scholar
  38. 38.
    Shah SC, Malone JI, Simpson NE. A randomized trial of intensive insulin therapy in newly diagnosed insulin-dependent diabetes mellitus. N Engl J Med 320 (9): 550–4, 1989.PubMedCrossRefGoogle Scholar
  39. 39.
    Keller RJ, Eisenbarth GS, Jackson RA. Insulin prophylaxis in individuals at high risk of type I diabetes. Lancet 341 (8850): 927–8, 1993.PubMedCrossRefGoogle Scholar
  40. 40.
    Pozzilli P, Pitocco D, Visalli N, Cavallo MG, Buzzetti R, Crino A, Spera S, Suraci C, Multari G, Cervoni M, Manca Bitti ML, Matteoli MC, Marietti G, Ferrazzoli F, Cassone Faldetta MR, Giordano C, Sbriglia M, Sarugeri M, Ghirlanda G. No effect of oral insulin on residual beta-cell function in recent-onset type I diabetes (the IMDIAB VII). IMDIAB Group. Diabetologia 43 (8): 1000–4, 2000.PubMedCrossRefGoogle Scholar
  41. 41.
    Elias D, Cohen IR. The hsp60 peptide p277 arrests the autoimmune diabetes induced by the toxin streptozotocin. Diabetes 1996. 45(9): 1168–72, 2000.Google Scholar
  42. 42.
    Fuchtenbusch M, Rabl W, Grassi B, Bachmann W, Standl E, Ziegler AG. Delay of type I diabetes in high risk, first degree relatives by parenteral antigen administration: the Schwabing Insulin Prophylaxis Pilot Trial. Diabetologia 41 (5): 536–41, 1998.PubMedCrossRefGoogle Scholar
  43. 43.
    Schatz DA, Bingley PJ. Update on major trials for the prevention of type 1 diabetes mellitus: the American Diabetes Prevention Trial (DPT-1) and the European Nicotinamide Diabetes Intervention Trial (ENDIT). J Pediatr Endocrinol Metab 14 (Suppl 1): 619–22, 2001.PubMedGoogle Scholar
  44. 44.
    Edelstein SL, Knowler WC, Bain RP, Andres R, Barrett-Connor EL, Dowse GK, Haffner SM, Pettitt DJ, Sorkin JD, Muller DC, Collins VR, Hamman RF. Predictors of progression from impaired glucose tolerance to NIDDM: an analysis of six prospective studies. Diabetes 46 (4): 701–10, 1997.PubMedCrossRefGoogle Scholar
  45. 45.
    Sato Y. Diabetes and life-styles: role of physical exercise for primary prevention. Br J Nutr 84 Suppl 2: S187–90, 2000.CrossRefGoogle Scholar
  46. 46.
    Wing RR, Venditti E, Jakicic JM, Polley BA, Lang W. Lifestyle intervention in overweight individuals with a family history of diabetes. Diabetes Care 21 (3): 350–9, 1998.PubMedCrossRefGoogle Scholar
  47. 47.
    Helmrich SP, Ragland DR, Leung RW, Paffenbarger Jr RS. Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus. N Engl J Med 325 (3): 147–52, 1991.PubMedCrossRefGoogle Scholar
  48. 48.
    Eriksson KF, Lindgarde F. Prevention of type 2 (non-insulindependent) diabetes mellitus by diet and physical exercise. The 6-year Malmo feasibility study. Diabetologia 34 (12): 891–8, 1991.PubMedCrossRefGoogle Scholar
  49. 49.
    Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344 (18): 1343–50, 2001.PubMedCrossRefGoogle Scholar
  50. 50.
    The Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Eng J. Med 346: 393–403, 2002.CrossRefGoogle Scholar
  51. 51.
    Henriksson J. Effects of physical training on the metabolism of skeletal muscle. Diabetes Care 15 (11): 1701–11, 1992.PubMedCrossRefGoogle Scholar
  52. 52.
    Rodnick KJ, Holloszy JO, Mondon CE, James DE. Effects of exercise training on insulin-regulatable glucose-transporter protein levels in rat skeletal muscle. Diabetes 39 (11): 1425–9, 1990.PubMedCrossRefGoogle Scholar
  53. 53.
    Devlin JT. Effects of exercise on insulin sensitivity in humans. Diabetes Care 15 (11): 1690–3, 1992.PubMedCrossRefGoogle Scholar
  54. 54.
    Kuczmarski RJ, Flegal KM, Campbell SM, Johnson CL. Increasing prevalence of overweight among US adults. The National Health and Nutrition Examination Surveys, 1960 to 1991. Jama 272 (3): 205–11, 1994.PubMedCrossRefGoogle Scholar
  55. 55.
    Manson JE, Spelsberg A. Primary prevention of non-insulindependent diabetes mellitus. Am J Prey Med 10 (3): 172–84, 1994.Google Scholar
  56. 56.
    Collins VR, Dowse GK, Toelupe PM, Imo TT, Aloaina FL, Spark RA, Zimmet PZ. Increasing prevalence of NIDDM in the Pacific island population of Western Samoa over a 13-year period. Diabetes Care 17 (4): 288–96, 1994.PubMedCrossRefGoogle Scholar
  57. 57.
    Lillioja S, Mott DM, Howard BV, Bennett PH, Yki-Jarvinen H, Freymond D, Nyomba BL, Zurlo F, Swinburn B, Bogardus C. Impaired glucose tolerance as a disorder of insulin action. Longitudinal and cross-sectional studies in Pima Indians. N Engl J Med 318 (19): 1217–25, 1988.PubMedCrossRefGoogle Scholar
  58. 58.
    Long SD, O’Brien K, MacDonald Jr KG, Leggett-Frazier N, Swanson MS, Pories WJ, Caro JF. Weight loss in severely obese subjects prevents the progression of impaired glucose tolerance to type II diabetes. A longitudinal interventional study. Diabetes Care 17 (5): 372–5, 1994.PubMedCrossRefGoogle Scholar
  59. 59.
    Markovic TP, Jenkins AB, Campbell LV, Furler SM, Kraegen EW, Chisholm DJ. The determinants of glycemic responses to diet restriction and weight loss in obesity and NIDDM. Diabetes Care 21 (5): 687–94, 1998.PubMedCrossRefGoogle Scholar
  60. 60.
    Kissebah AH, Vydelingum N, Murray R, Evans DJ, Hartz AJ, Kalkhoff RK, Adams PW. Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab 54 (2): 254–60, 1982.PubMedCrossRefGoogle Scholar
  61. 61.
    Bjorntorp P. Abdominal obesity and the development of noninsulindependent diabetes mellitus. Diabetes Metab Rev 4 (6): 615–22, 1988.PubMedCrossRefGoogle Scholar
  62. 62.
    Feskens EJ, Virtanen SM, Rasanen L, Tuomilehto J, Stengard J, Pekkanen J, Nissinen A, Kromhout D. Dietary factors determining diabetes and impaired glucose tolerance. A 20-year follow-up of the Finnish and Dutch cohorts of the Seven Countries Study. Diabetes Care 18 (8): 1104–12, 1995.PubMedCrossRefGoogle Scholar
  63. 63.
    Marshall JA, Hoag S, Shetterly S, Hamman RF. Dietary fat predicts conversion from impaired glucose tolerance to NIDDM. The San Luis Valley Diabetes Study. Diabetes Care 17 (1): 50–6, 1994.PubMedCrossRefGoogle Scholar
  64. 64.
    Swinburn BA, Metcalf PA, Ley SJ. Long-term (5-year) effects of a reduced-fat diet intervention in individuals with glucose intolerance. Diabetes Care 24 (4): 619–24, 2001.PubMedCrossRefGoogle Scholar
  65. 65.
    McGarry JD, Dobbins RL. Fatty acids, lipotoxicity and insulin secretion. Diabetologia 42 (2): 128–38, 1999.PubMedCrossRefGoogle Scholar
  66. 66.
    Houseknecht KL, Vanden Heuvel JP, Moya-Camarena SY, Portocarrero CP, Peck LW, Nickel KP, Belury MA. Dietary conjugated linoleic acid normalizes impaired glucose tolerance in the Zucker diabetic fatty fa/fa rat. Biochem Biophys Res Commun 1998. 244 (3): 678–82, 1999.Google Scholar
  67. 67.
    Fontbonne A, Charles MA, Juhan-Vague I, Bard JM, Andre P, Isnard F, Cohen JM, Grandmottet P, Vague P, Safar ME, Eschwege E. The effect of metformin on the metabolic abnormalities associated with upper-body fat distribution. BIGPRO Study Group. Diabetes Care 19 (9): 920–6, 1996.PubMedCrossRefGoogle Scholar
  68. 68.
    Freemark M, Bursey D. The effects of metformin on body mass index and glucose tolerance in obese adolescents with fasting hyperinsulinemia and a family history of type 2 diabetes. Pediatrics 107 (4): E55, 2001.PubMedCrossRefGoogle Scholar
  69. 69.
    Cavaghan MK, Ehrmann DA, Byrne MM, Polonsky KS. Treatment with the oral antidiabetic agent troglitazone improves beta cell responses to glucose in subjects with impaired glucose tolerance. J Clin Invest 100 (3): 530–7, 1997.PubMedCrossRefGoogle Scholar
  70. 70.
    Jia DM, Tabaru A, Nakamura H, Fukumitsu KI, Akiyama T, Otsuki M. Troglitazone prevents and reverses dyslipidemia, insulin secretory defects, and histologic abnormalities in a rat model of naturally occurring obese diabetes. Metabolism 49 (9): 1167–75, 2000.PubMedCrossRefGoogle Scholar
  71. 71.
    Sreenan S, Sturis J, Pugh W, Burant CF, Polonsky KS. Prevention of hyperglycemia in the Zucker diabetic fatty rat by treatment with metformin or troglitazone. Am J Physiol 271 (4 Pt 1): E742–7, 1996.PubMedGoogle Scholar
  72. 72.
    Nolan JJ, Ludvik B, Beerdsen P, Joyce M, Olefsky J. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med, 1994. 331 (18): 1188–93.PubMedCrossRefGoogle Scholar
  73. 73.
    Antonucci T, Whitcomb R, McLain R, Lockwood D, Norris RM. Impaired glucose tolerance is normalized by treatment with the thiazolidinedione troglitazone. Diabetes Care 20 (2): 188–93, 1997.PubMedCrossRefGoogle Scholar
  74. 74.
    Smith SA, Lister CA, Toseland CD, Buckingham RE. Rosiglitazone prevents the onset of hyperglycaemia and proteinuria in the Zucker diabetic fatty rat. Diabetes Obes Metab 2 (6): 363–72, 2000.PubMedCrossRefGoogle Scholar
  75. 75.
    Tafuri SR. Troglitazone enhances differentiation, basal glucose uptake, and Glutl protein levels in 3T3–L1 adipocytes. Endocrinology 137 (11): 4706–12, 1996.PubMedCrossRefGoogle Scholar
  76. 76.
    Tanaka Y, Gleason CE, Tran PO, Harmon JS, Robertson RP. Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants. Proc Natl Acad Sci U S A 96 (19): 10857–62, 1999.PubMedCrossRefGoogle Scholar
  77. 77.
    Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342 (3): 14553, 2000.Google Scholar
  78. 78.
    Carlsson PO, Berne C, Jansson L. Angiotensin II and the endocrine pancreas: effects on islet blood flow and insulin secretion in rats. Diabetologia 1998.41(2): 127–33, 2000.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Asha Thomas-Geevarghese
  • Kevan C. Herold

There are no affiliations available

Personalised recommendations