Electrochemical Sensors

  • Jiří Janata


Electrochemical sensors are the largest and oldest group of chemical sensors. Many members of this group have reached commercial maturity while many are still in various stages of development. They will be discussed within the broadest framework of electrochemistry, the interaction of electricity and chemistry. Sensors as diverse as enzyme electrodes, high-temperature oxide sensors, fuel cells, surface conductivity sensors, etc., will be included. They are divided by their mode of measurement into potentiometric (measurement of voltage), amperometric (measurement of current), and conductimetric (measurement of conductivity) sensors.


Electrochemical Sensor Equivalent Electrical Circuit Liquid Junction Electron Work Function Potentiometric Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 4

  1. 1.
    J. O’M. Bockris and A. K. N. Reddy, Modern Electrochemistry, Plenum Press, New York, 1970.CrossRefGoogle Scholar
  2. 2.
    G. Kortüm, Treatise on Electrochemistry, Elsevier, New York, 1965.Google Scholar
  3. 3.
    J. Koryta, J. Dvorak, and V. Bohackova, Electrochemistry, Methuen, London, 1966.Google Scholar
  4. 4.
    A. J. Bard and L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, Wiley, New York, 1980.Google Scholar
  5. 5.
    J. Janata, Chemically sensitive field-effect transistors, in: Solid State Chemical Sensors ( J. Janata and R. J. Huber, eds.), Academic Press, New York, 1985.Google Scholar
  6. 6.
    K. Cammann, Ion-selective bulk membranes as models for biomembranes, in: Current Topics in Chemistry, Vol. 128, Springer-Verlag, Berlin, 1985.Google Scholar
  7. 7.
    R. Dohner, D. Wegmann, W. E. Morf, and W. Simon, Anal. Chem. 58 (1986) 2589.CrossRefGoogle Scholar
  8. 8.
    P. A. Comte and J. Janata, Anal Chim. Acta 101 (1978) 247.CrossRefGoogle Scholar
  9. 9.
    R. L. Smith and D. C. Scott, IEEE Trans. Biomed. Eng. BME-33 (1986) 83.Google Scholar
  10. 10.
    W. E. Morf, The Principles of Ion-Selective Electrodes and of Membrane Transport, Elsevier, New York, 1981.Google Scholar
  11. 11.
    J. Koryta and K. Stulik, Ion-Selective Electrodes, Cambridge University Press, Cambridge, 1983.CrossRefGoogle Scholar
  12. 12.
    R. P. Buck, Electrochemistry of ion-selective electrodes, in: Chemically Sensitive Electronic Devices ( J. Zemel and P. Bergveld, eds.), Elsevier, New York, 1981.Google Scholar
  13. 13.
    G. Eisenman, in: Glass Electrodes for Hydrogen and Other Cations, Chapter 7, Dekker, New York, 1969.Google Scholar
  14. 14.
    M. S. Frant and J. W. Ross, Jr., Science 154 (1966) 473.CrossRefGoogle Scholar
  15. 15.
    M. L. Iglehart, R. P. Buck, and E. Pungor, Anal. Chem. 60 (1988) 290.CrossRefGoogle Scholar
  16. 16.
    Xizhong Li, E. M. J. Verpoorte, and D. J. Harrison, Anal. Chem. 60 (1988) 493.CrossRefGoogle Scholar
  17. 17.
    H. Freiser, Coated wire ion selective electrodes, in: Ion-Selective Electrodes in Analytical Chemistry (H. Freiser, ed.), Vol. 2, Chapter 2, Plenum Press, New York, 1980.Google Scholar
  18. 18.
    E. J. Fogt, D. F. Untereker, M. S. Norenberg, and M. E. Meyerhoff, Anal. Chem. 57 (1985) 1995.CrossRefGoogle Scholar
  19. 19.
    J. Ruzicka and C. G. Lamm, Anal. Chim. Acta 54 (1971) 1.CrossRefGoogle Scholar
  20. 20.
    T. A. Fjeldly and K. Nagy, Sensors and Actuators 8 (1985) 261.CrossRefGoogle Scholar
  21. 21.
    J. Janata and R. J. Huber, Chemically sensitive field-effect transistors, in: Ion-Selective Electrodes in Analytical Chemistry (H. Freiser, ed.), Vol. 2, Plenum Press, New York, 1980.Google Scholar
  22. 22.
    P. Bergveld, IEEE Trans. Biomed. Eng. BME-19 (1970) 70.Google Scholar
  23. 23.
    T. Matsuo, M. Esashi, and K. Inuma, Dig. Joint Meet. Tohoku Sect. IEEEJ, 1971.Google Scholar
  24. 24.
    J. R. Sandifer, Anal. Chem. 69 (1988) 1553.Google Scholar
  25. 25.
    S. D. Caras, D. Petelenz, and J. Janata, Anal. Chem. 57 (1985) 1920.CrossRefGoogle Scholar
  26. 26.
    S. D. Caras and J. Janata, Anal. Chem. 57 (1985) 1924.Google Scholar
  27. 27.
    G. G. Guilbault, Enzyme electrodes, in: Biomedical Investigations, in Medical and Biological Applications of Electrochemical Devices ( J. Koryta, Ed.), Wiley, New York, 1980.Google Scholar
  28. 28.
    M. A. Arnold, Ion-Sel. Electrode Rev. 8 (1986) 85.Google Scholar
  29. 29.
    J. W. Severinghaus, in: Handbook of Physiology, Vol. II ( W. O. Fenn and H. Rahn, eds.), American Physiological Society, Washington, D.C., 1965.Google Scholar
  30. 30.
    C. S. G. Phillips, J. Sci. Instrum. 28 (1951) 342.CrossRefGoogle Scholar
  31. 31.
    J. H. Griffith and C. S. G. Phillips, J. Chem. Soc. 3446 (1954).Google Scholar
  32. 32.
    I. Lundstrom and C. Svensson, Gas-sensitive metal gate semiconductor devices, in: Solid State Chemical Sensors ( J. Janata and R. J. Huber, eds.), Academic Press, New York, 1985.Google Scholar
  33. 33.
    M. Josowicz and J. Janata, Suspended gate field-effect transistor, in: Chemical Sensor Technology, Vol. 1 ( T. Seiyama, ed.), Elsevier, New York, 1988.Google Scholar
  34. 34.
    Y. Miyahara, K. Tsukada, and H. Miyagi, Proc. 6th Sensor Symp. ( Jap. ), The Institute of Electrical Engineers of Japan, 1986, p. 261.Google Scholar
  35. 35.
    H. Reiss, J. Phys. Chem. 89 (1985) 3789.Google Scholar
  36. 36.
    R. A. Bull, F.-R. Fan, and A. J. Bard, J. Electrochem. Soc. 131 (1984) 687.CrossRefGoogle Scholar
  37. 37.
    M. Salmon, A. Martinez, and K. K. Kanazawa, J. Electroanal. Chem. 130 (1981) 181.CrossRefGoogle Scholar
  38. 38.
    O. Inganas and I. Lundstrom, Synth. Metals 10 (1984) 5.CrossRefGoogle Scholar
  39. 39.
    I. Lundstrom and D. Södeberg, Sensors and Actuators 2 (1981/82) 105.Google Scholar
  40. 40.
    D. Krey, K. Dobos, and G. Zimmer, Sensors and Actuators 3 (1982/83) 169.Google Scholar
  41. 41.
    A. Pelloux, P. Fabry, and P. Durante, Sensors and Actuators 7 (1985) 245.CrossRefGoogle Scholar
  42. 42.
    N. Yamazoe, J. Hisamoto, N. Miura, and S. Kuwata, Sensors and Actuators 12 (1987) 415.CrossRefGoogle Scholar
  43. 43.
    W. Weppner, Sensors and Actuators 12 (1987) 107.CrossRefGoogle Scholar
  44. 44.
    J. Fouletier and E. Siebert, Ion-Sel. Electrode Rev. 8 (1986) 133.Google Scholar
  45. 45.
    R. M. Wightman and D. O. Wipf, Ultramicroelectrodes, in: Electroanalytical Chemistry, Vol. 15 ( A. J. Bard, ed.), Dekker, New York, 1988.Google Scholar
  46. 46.
    M. Fleischmann, S. Pons, D. R. Rolison, and P. P. Schmidt, Ultramicroelectrodes, Datatech Systems Inc., Morganton, N.C., 1987.Google Scholar
  47. 47.
    Hsuang-Jung Huang, Peixing He, and L. R. Faulkner, Anal. Chem. 58 (1986) 2889.CrossRefGoogle Scholar
  48. 48.
    T. Schulmeister and F. Scheller, Anal. Chim. Acta 170 (1985) 279.CrossRefGoogle Scholar
  49. 49.
    T. Schulmeister and F. Scheller, AnaL Chim. Acta 171 (1985) 111.CrossRefGoogle Scholar
  50. 50.
    T. Schulmeister, Anal. Chim. Acta 198 (1987) 223.CrossRefGoogle Scholar
  51. 51.
    A. E. G. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. J. Aston, J. I. Higgins, E. V. Plotkin, L. D. L. Scott, and A. P. F. Turner, Anal. Chem. 56 (1984) 667.CrossRefGoogle Scholar
  52. 52.
    Y. Degani and A. Heller, J. Phys. Chem. 91 (1987) 1285.CrossRefGoogle Scholar
  53. 53.
    M. Umana and J. Waller, Anal. Chem. 58 (1986) 2979.CrossRefGoogle Scholar
  54. 54.
    W. J. Albery, P. N. Bartlett, M. Bycroft, D. H. Craston, and B. J. Driscoll, J. Electroanal. Chem. 218 (1987) 119.CrossRefGoogle Scholar
  55. 55.
    C. F. M. Kingdom, Appl. MicrobioL BiotechnoL 21 (1985) 176.CrossRefGoogle Scholar
  56. 56.
    C. A. Marrese, O. Miyawaki, and L. B. Wingard, Jr., Anal. Chem. 59 (1987) 248.CrossRefGoogle Scholar
  57. 57.
    D. A. Gough, J. K. Leypoldt, and J. C. Armour, Diabetes Care 5 (1982) 190.CrossRefGoogle Scholar
  58. 58.
    D. A. Gough, J. Y. Lucisano, and P. H. S. Tse, Anal. Chem. 57 (1985) 2351.CrossRefGoogle Scholar
  59. 59.
    R. W. Murray, in: Electroanalytical Chemistry, Vol. 13 ( A. J. Bard, ed.), Dekker, New York, 1984.Google Scholar
  60. 60.
    M. S. Wrighton (ed.), Interfacial Photoprocesses: Energy Conversion and Synthesis, ACS Advances in Chemistry Series, Vol. 184, American Chemical Society, Washington, D.C., 1980.Google Scholar
  61. 61.
    G. A. Gerhardt, A. F. Oke, G. Nagy, B. Moghaddam, and R. N. Adams, Brain Res. 290 (1984) 390.CrossRefGoogle Scholar
  62. 62.
    H. C. Hurrell and H. D. Abruna, Anal. Chem. 60 (1988) 254.CrossRefGoogle Scholar
  63. 63.
    F. Kreuzer, H. P. Kimmich, and M. Brezina, Polarographic determination of oxygen in biological materials, in: Medical and Biological Applications of Electrochemical Devices ( J. Koryta, ed.), Wiley, London, 1980.Google Scholar
  64. 64.
    I. Fatt, Polarographic Oxygen Sensor, CRC Press, Cleveland, 1976.Google Scholar
  65. 65.
    M. L. Hitchman, Measurement of Dissolved Oxygen, Wiley, New York, 1978.Google Scholar
  66. 66.
    Y. Saito, J. Appl. Physiol. 23 (1967) 979.Google Scholar
  67. 67.
    V. Vacek, V. Linek, and J. Sinkule, J. Electrochem. Soc. 133 (1986) 540.CrossRefGoogle Scholar
  68. 68.
    T. Otagawa, S. Zaromb, and J. Stetter, J. Electrochem. Soc. 132 (1985) 2951.CrossRefGoogle Scholar
  69. 69.
    K. Saji, J. Electrochem. Soc. 134 (1987) 2430.CrossRefGoogle Scholar
  70. 70.
    E. M. Logothetis, Oxygen sensors for automotive applications, in: Chemical Sensors (D. R. Turner, ed.), p. 142, Electrochemical Society, 1987.Google Scholar
  71. 71.
    S. M. Sze, Physics of Semiconductor Devices, p. 555, Wiley, New York, 1981.Google Scholar
  72. 72.
    G. Heiland, Sensors and Actuators 2 (1982) 343.CrossRefGoogle Scholar
  73. 73.
    G. Heiland and D. Kohl, in: Chemical Sensor Technology, Vol. 1 ( T. Seiyama, ed.), Elsevier, Amsterdam, 1988.Google Scholar
  74. 74.
    W. Göpel, Prog. Surf. Sci. 20 (1985) 9.CrossRefGoogle Scholar
  75. 75.
    R. M. Warner, Jr., and B. L. Grung, Transistors, Wiley, New York, 1983.Google Scholar
  76. 76.
    J. J. McNerney, P. R. Buseck, and R. C. Hanson, Science 178 (1972) 612.CrossRefGoogle Scholar
  77. 77.
    M. Josowicz, J. Janata, and M. Levy, J. Electrochem. Soc. 135 (1988) 112.CrossRefGoogle Scholar
  78. 78.
    A. Wilson and R. A. Collins, Sensors and Actuators 12 (1987) 389.CrossRefGoogle Scholar
  79. 79.
    J. Ghoroghchian, F. Sarfarazi, T. Dibble, J. Cassidy, J. J. Smith, A. Russell, G. Dunmore, M. Fleischmann, and S. Pons, Anal. Chem. 58 (1986) 2278.CrossRefGoogle Scholar
  80. 80.
    B. Bott and T. A. Jones, Sensors and Actuators 5 (1984) 43.CrossRefGoogle Scholar
  81. 81.
    R. H. Tredgold, F. C. J. Young, P. Hodge, and A. Hoorfar, IEEE Proc. 132, Pt. 1 (1985) 151.Google Scholar
  82. 82.
    S. Bruckenstein and J. S. Symanski, J. Chem. Soc., Faraday Trans. 1 82 (1986) 1105.Google Scholar
  83. 83.
    N. Yamazoe and Y. Shimizu, Sensors and Actuators 10 (1986) 379.CrossRefGoogle Scholar
  84. 84.
    H. Grange, C. Bieth, H. Boucher, and G. Delapierre, Sensors and Actuators 12 (1987) 291.CrossRefGoogle Scholar
  85. 85.
    M. Hijikigawa, H. Furubayashi, S. Miyoshi, and Y. Inami, Proc. 4th Sensor Symp. ( Jap. ), Institute of Electrical Engineers of Japan, 1984, p. 135.Google Scholar
  86. 86.
    S. L. Garverick and S. D. Senturia, IEEE Trans. Electron Devices ED-29 (1982) 90.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Jiří Janata
    • 1
  1. 1.University of UtahSalt Lake CityUSA

Personalised recommendations