Principles and Practices of Winemaking pp 320-351 | Cite as
The Physical and Chemical Stability of Wine
Abstract
The major physical instability in bottled wines continues to be the precipitation of the tartaric salts, potassium bitartrate, and calcium tartrate. Prevention of this precipitation in bottled wines is desirable because consumers find it objectionable and an indication of poor quality control. Precipitation of these salts can be due to one or more reasons, such as the incomplete stabilization in the cellar, the use of a nonrepresentative sample for the stability test, the use of an inappropriate stability test, the removal of colloidal materials at the point of final filtration that have previously inhibited the precipitation and natural chemical changes, especially the polymerization of phenolic pigments. The initial instability is caused by supersaturated levels in juices that are augmented by the decrease in solubility due to ethanol and the low temperatures used for wine storage.
Keywords
Tartaric Acid White Wine Seed Crystal Plate Heat Exchanger Heat TestPreview
Unable to display preview. Download preview PDF.
References
- Abgueguen, O., and R. B. Boulton. 1993. “The crystallization kinetics of calcium tartrate from model solutions and wines.” Am. J. Enol. Vitic. 44: 65–75.Google Scholar
- Anelli, G. 1977. “The proteins of musts.” Am. J. Enol. Vitic. 28: 200–203.Google Scholar
- Anon. 1976. “Scraped-surface heat exchanger reduces wine cold stabilization time.” Food Eng. 48 (Nov): 155.Google Scholar
- Aspinall, G. O. 1970. Polysaccharides. Pergamon Press, New York, pp. 89–92.Google Scholar
- Bakalinsky, A. T., and R. Boulton. 1985. “The study of an immobilized acid protease for the treatment of wine proteins.” Am. J. Enol. Vitic. 36: 23–29.Google Scholar
- Balakian, S., and H. W. Berg. 1968. “The role of polyphenols in the behavior of potassium bitartrate in red wines.” Am. J. Enol. Vitic. 19: 91–100.Google Scholar
- Bauer, H., M. Horisberger, D. A. Bush, and E. Sigarlaki. 1972. “Mannan as a major component of the bud scars of Saccharomyces cerevisiae.” Arch. Mikrobiol. 85: 202–208.CrossRefGoogle Scholar
- Bayly, F. C., and H. W. Berg. 1967. “Grape and wine proteins of white wine varietals.” Am. J. Enol. Vitic. 18: 18–32.Google Scholar
- Belleville, M.-P., J.-M. Brillouet, B. Tarodö De La Fuente, L. Saulnier, And M. Moutounet. 1991. “Differential roles of red wine colloids in the fouling of a cross-flow microfiltration alumina membrane.” Vitic. Enol. Sci. 46: 100–107.Google Scholar
- Berg, H. W., and M. Akiyoshi. 1961. “Determination of protein stability in wine.” Am. J. Enol. Vitic. 12: 107–110.Google Scholar
- Berg, H. W., and M. Akiyoshi. 1971. “The utility of potassium bitartrate concentration product values in wine processing.” Am. J. Enol. Vitic. 22: 127–134.Google Scholar
- Berg, H. W., M. Akiyoshi, and M. A. Amerine. 1979. “Potassium and sodium content of California wines.” Am. J. Enol. Vitic. 30: 55–57.Google Scholar
- Berg, H. W., R. Desoto, and M. Akiyoshi. 1968. “The effect of refrigeration, bentonite clarification and ion exchange on potassium behavior in wines.” Am. J. Enol. Vitic. 19: 208–212.Google Scholar
- Berg, H. W., and R. M. Keefer1958. “Analytical determination of tartrate stability in wine: 1. Potassium bitartrate.” Am. J. Enol. 9: 180–193.Google Scholar
- Berg, H. W., and R. M. Keefer. 1959. “Analytical determination of tartrate stability in wine: 2. Calcium tartrate.” Am. J. Enol. 10: 105–109.Google Scholar
- Blouin, J., and A. Desenne. 1983. “Essai d’un appareil de traitment des vins par le froid en continu (Systeme Crystal-flow, Alfa-Laval).” Conn. Vigne Vin 17: 137–150.Google Scholar
- Blouin, J., G. Guimberteau, and P. Audouit. 1979. “Prevention des precipitations tartriques dans les vins par le procede par contact.” Conn. Vigne Vin 13: 149–169.Google Scholar
- Boiret, M., A. Marty, C. Fabrega, A. Guittard, A. Tixier, A. Schaeffer, and A. Schlewitz. 1991. “Indice de stabilite tartrique des vins et risque de precipitation.” Rev. Fr. Oenol. 128: 53–58.Google Scholar
- Borr, E. W., and P. Sghottler. 1985. “Optimizing tartrate separation through the use of centrifuges.” Filtration and Separation 22: 364–365.Google Scholar
- Boulton, R. 1983. “The conductivity method for evaluating the potassium bitartrate stability of wines.” Pts 1,2. Enology Briefs 2,3 Cooperative Extension, Davis, CA: University of California.Google Scholar
- Bradford, M. M. 1976. “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding.” Anal. Biochem. 72: 248–254.CrossRefGoogle Scholar
- Brillouet, J.-M., M.-P. Belleville, and M. Moutounet. 1991. “Possible protein-polysac-charide complexes in red wines.” Am. J. Enol. Vitic. 42: 150–152.Google Scholar
- Brillouet, J.-M., C. Bosso, and M. Moutounet. 1990. “Isolation, purification and characteriza-tion of an arabinogalactan from a red wine.” Am.J. Enol. Vitic. 41:29–36.Google Scholar
- Brillouet, J.-M., M. Moutounet, and J. L. Escudier. 1989. “Fate of yeast and grape pectic polysaccharides of a young red wine in the cross-flow microfiltration process.” Vitis 28: 49–63.Google Scholar
- Clark, J. P., K C. Fugelsang, and B. H. Gump. 1988. “Factors affecting induced calcium tartrate precipitation in wine.” Am. J. Enol. Vitic. 39: 155–161.Google Scholar
- Correa, I., M. C. Polo, L. Amigo, and M. Ramos. 1988. “Separation des proteines des mouts de raisin au moyen de techniques electrophoretiques.” Conn. Vigne Vin. 22: 1–9.Google Scholar
- Curvelo-Garcia, A. S. 1987. “0 producto de solubilidade do tartarato de calcio em meios hidroalcoolicos em funcâo dos sues factores determinantes.” Ciencia Tec. Vitiv. 6: 19–28.Google Scholar
- Desoto, R. T., and H. Yamada. 1963. “Relationship of solubility products to long range tartrate stability.” Am.J. Enol. Vitic. 14: 43–51.Google Scholar
- Dietrich, H., H. Schmitt, and K Wucherpfennig. 1992. “The alteration of the colloids of must and wine during winemaking. II. Change of the charge and molecular weight distribution of the polysaccharides.” Vitic. Enol. Sci. 47: 87–95.Google Scholar
- Dietrich, H., and E. Zimmer. 1989. “Die Kolloidbestimmung von Weinen: ein Methodenvergleich.” Mitt. Klost. 44: 13–19.Google Scholar
- Domeizel, M., J. Galea, J. Rey, S. Marchandeau, and A. Guittard. 1992. “Mise au point d’une methode de prevision des precipitations tartriques dans le vin.” Rev. Fr. Oenol. 139: 15–24.Google Scholar
- Droux, F., and C. Vialatte. 1983. “Utilisation du procedure ”mini contact“ pour l’etude des precipitations tartriques dans le vins.” Rev. d Oenol. 29: 13–14.Google Scholar
- Dubourdieu, D., R.-M. Llauberes, and C. Olivier. 1986. “Estimation rapide des constituants macromdeculaires des mouts et des ving par chromatographie liquide haute pression de tamisage moleculaire.” Conn. Vigne Vin. 20: 119–123.Google Scholar
- Dubourdieu, D., J. C. Villettaz, C. Desplanques, and P. Ribéreau-Gayon, 1981. “Degradation enzymatique du glucane de Botrytis cinerea.” Conn. Vigne Vin 15: 161–177.Google Scholar
- Dunsford, P., and R. Boulton. 1981. “The kinetics of potassium bitartrate crystallization from table wines. Pts. 1 and 2.” Am. J. Enol. Vitic. 32:100–105 and 106–110.Google Scholar
- Edwards, T. L., V. L. Singleton, and R. Boulton. 1985. “Formation of ethyl esters of tartaric acid during wine aging: Chemical and sensory changes.” Am. J. Enol. Vitic. 36: 118–124.Google Scholar
- Escudier, J. L. and M. Moutounet. 1987. “Filtra-ton tangentielle et stabilisation tartrique des vins. II. Apport de la microfiltration tangentialle dans la stabilisation tartrique d’un vin rouge.” Rev. Fr. Oenol. 109: 44–50.Google Scholar
- Escudier, J. L., M. Moutounet, and P. Benard. 1987. “Filtration tangentielle et stabilisation tartrique des vins. I. Influence de l’ultrafiltration sur la cìnetique de cristallisation du bitartrate de potassium des vins.” Rev. Fr. Oenol. 108: 52–57.Google Scholar
- Esteve, J. L. 1988. “La stabilisation des vins contre les precipitations tartriques par systeme Crystalloprocess.” Rev. d Oenol. 47: 25–27.Google Scholar
- Ferenczi, S., A. Asvany, and L. Erczhegyi. 1982. “Stabilisation des vins contre les precipitations par le froid.” Bull. O.I.V. 613: 203–220.Google Scholar
- Feuillat, M., C. Charpentier, G. Picca, and P. Bernard. 1988. “Production des colloides par levures dans le vin mousseux elabore selon la methode champenoise.” Rev. Fr. Oenol. 111: 36–45.Google Scholar
- Fujinawa, S., G. Burns, and P. De La Teja. 1990. “Application of acid urease to reduction of urea in commercial wines.” Am. J. Enol. Vitic. 41: 350–354.Google Scholar
- Fukuda, Y. 1992. The behavior of protein fractions in white wines. M.S. thesis, Davis, CA: University of California.Google Scholar
- Gaillard, M., B. Ratsimba, and J. L. Favarel. 1990. “Stabilite tartrique des vins: Comparison de differents tests, mesure de l’influence des polyphenols.” Rev. Fr. Oenol. 123: 7–13.Google Scholar
- Gaillard, M., B. Ratsimba, and C. Laguerie. 1988. “La stabilisation tartrique: Reserche d’une plus grande securite.” Rev. d Oenol. 47: 21–23.Google Scholar
- Godshal, M. A. 1983. “Interference of plant polysaccharides and tannin in the Coomassie Blue G250 test for protein.” J. Food Sci. 48: 1346–1347.CrossRefGoogle Scholar
- Görtges, S., and R. Stocké. 1987. “Minikontakt-verfahren zur Beurteilung der Calciumtartratstabilitat.” Weinwirt. Tech. 123: 19–21.Google Scholar
- Hagen, M. M. 1979. “Les precipitation tartriques.” Rev. Fr. Oenol. 74: 63–69.Google Scholar
- Haushofer, H., and L. Szemeliker. 1973. “Die Forderung der Weinsteinausscheidung bei Weinen durch Zugabe von Impfkristallen, Kratzen an Glaswanden und Anwendung von Ultraschall.” Mitt. Kloster. 23: 259–284.Google Scholar
- Interesse, F. S., V. Allogio, F. Lamporelli, and G. D’avella. 1987. “Proteins in must estimated by size exclusion HPLC.” Food Chem. 23: 65–78.CrossRefGoogle Scholar
- Jakob, L. 1968. “Eiweissgehalt und Bentonitschönung von Wein.” Wein-Wissen. 23: 255–274.Google Scholar
- Jakob, L. 1969. “Eiweissgehalt und Eiweissstabilisier ung von Wein.” Deut. Weinbau. 24: 177–189.Google Scholar
- Kantz, K, and V. L. Singleton. 1990. “Isolation and determination of polymeric polyphenols using Sephadex LH-20 and analysis of grape tissue extracts.” Am. J. Enol. Vitic. 41: 223–228.Google Scholar
- Kean, C. E., and G. L. Marsh. 1957. “Investigations of copper complexes causing cloudiness in wines. 1. Chemical composition.” Am. J. Enol. 8: 80–86.Google Scholar
- Lay, H., and W. Leib. 1988. “Über das Vorkommen der Metalle Zink, Cadmium, Blei und Kupfer in Most, Wein und in den bei der Weinbereitung anfallenden Nebenprodukten.” Wein-Wissen. 43: 107–115.Google Scholar
- Lay, H., and E. Lemperle. 1981. “Kupfergehalt auf Weintrauben, in Traubenmost und in Wein nach Anwendung kupferhaltiger Peronospora-Fungizide.” Weinwirt. 117: 908–912.Google Scholar
- Llauberes, R. M. 1990. “Structure of an extracellular ß D-glucan from Pediococcus sp., a wine lactic bacteria.” Carbohydr. Res. 203: 103–107.CrossRefGoogle Scholar
- Llauberes, R. M., D. Dubourdieu, and J.-C. Villetaz. 1987. “Exocellular polysaccharide from Saccharomyces in wine.” J. Sci. Food Agric. 41: 277–286.CrossRefGoogle Scholar
- Maujean, A., L. Sausy, and D. Vallee1985. “Determination de la saturation en bitartrate de potassium d’un vin. Quantification des effets colloides protecteurs.” Rev. Fr. Oenol. 100: 39–49.Google Scholar
- Maujean, A., D. Vallee, and L. Sausy. 1986. “Influence de la granulometrie des cristaux de tartre de contact et des traitements et collages sur la cinetique de cristallisation du bitartrate de potassium dans les vins blancs.” Rev. Fr. Oenol. 104: 34–41.Google Scholar
- Moretti, R. H., and H. W. Berg. 1965. “Variability among wines to protein clouding.” Am. J. Enol. Vitic. 16: 69–78.Google Scholar
- Mourges, J., P. Benard, A. Matignon, T. Conte, and M. Mikolajczac. 1982. “Effet du chauffage de la vendage sur la solubilisation des polyosides et sur clarification des mouts, des moutes et des vin.” Sci. Aliments. 2: 83–96.Google Scholar
- Müller, T., and G. Würdig. 1978. “Das Minikontaktverfahren-ein einfacher Test zur Prüfung auf Weinsteinstabilitât.” Weinwirt. 114: 857–861.Google Scholar
- Müller, T., G. Würdig, G. Scholten, and G. Friedrich. 1990. “Bestimmung der Calciumtartrat- Sättigungstemperatur von Weinen durch Leitfähigkeitsmessung.” Mitt. Kloster. 40: 158–168.Google Scholar
- Müller-Spath, T. 1979. “La stabilisation du tartre avec le procede a contact.” Rev. Fr. Oenol. 73: 41–47.Google Scholar
- Murphey, J. M., J. R. Powers, and S. E. Spayd. 1989. “Estimation of soluble protein concentration of white wines using Coomassic Brilliant Blue G250.” Am. J. Enol. Vitic. 40: 189–193.Google Scholar
- Nishino, H., and H. Tanahashi. 1987. “Properties of nucleation and crystal growth of potassium bitartrate in wine.” Proc. 8th Intnl. Oenol. Symp., Cape Town, South Africa, 172–193.Google Scholar
- Oh, H., and J. E. Hoff. 1987. “pH dependence of complex formation between condensed tannins and proteins.” J. Food Sci. 52: 1267–1269.CrossRefGoogle Scholar
- Ough, C. S., E. A. Crowell, and J. Benz. 1982. “Metal content of California wines.” J. Food Sci. 47: 825–828.CrossRefGoogle Scholar
- Paezold, M., L. Dulau, and D. Dubourdieu. 1990. “Fractionnement et caracterisation des glycoprotenes dans les mouts de raisins blancs.” J. Int. Sci. Vigne Vin. 24: 13–28.Google Scholar
- Parentheon, A., and M. Feuillat. 1978. “Les colloides solubles du vin de champagne en relation avec le rumage.” Conn. Vigne Vin 3: 177–193.Google Scholar
- Peri, C., M. Riva, and P. Decto. 1988. “Crossflow membrane filtration of wines: Comparison of performance of ultrafiltration, microfiltration and intermediate cut-off membranes.” Am. J. Enol. Vitic. 39: 162–168.Google Scholar
- Pilone, F. B., and H. W. Berg. 1965. “Some factors affecting tartrate stability in wine.” Am. J. Enol. Vitic. 16: 195–211.Google Scholar
- PococK, K. F., and B. C. Rankine. 1973. “Heat test for detecting protein instability in wine.” Aust. Wine Brew. Spirit Rev. 91 (5): 42–43.Google Scholar
- Postel, W. 1983. “La solubilité et la cinétique de cristallisation du tartrate de calcium dans le vin.” Bull. O.I.V. 56 (629–630): 554–568.Google Scholar
- Postel, W., and E. Prasch. 1977. “Das Kontaktverfahren, eine neue Möglichkeit der Weinsteinstabilisierung.” Weinwirt. 113: 866–878.Google Scholar
- Read, S. M., and D. H. Northcote. 1981. “Minimization of variation in the response to different proteins of the Coomassie Blue G dye-Ginding assay for protein.” Anal. Biochem. 116: 53–64.CrossRefGoogle Scholar
- Rhein, O. H. 1977. “Weinsteinstabilisierung auf natürlichem Wege.” Weinwirt. 113: 515–519.Google Scholar
- Rhein, O. H., and F. Neradt. 1979. “Tartrate stabilization by the Contact process.” Am. J. Enol. Vitic. 30: 265–271.Google Scholar
- Riese, H., and R. Boulton. 1980. “Speeding-up cold stabilization.” Wines and Vines 61:Nov. 68–69.Google Scholar
- Rodriguez-Clemente, R., and I. Correa-Gorospe. 1988. “Structural, morphological and kinetic aspects of potassium hydrogen tartrate precipitation from wines and ethanolic solutions.” Am. J. Enol. Vitic. 39: 169–179.Google Scholar
- Schmitt, A., R. Miltenberger, K. Curschmann, and H. Kohler. 1980. “Einfacher Test zur Bestimmung der Weinsteinstabilitât.” Deut. Weinbau 35: 194–196.Google Scholar
- Scott, R. S., T. G. Anders, and N. Hums. 1981. Rapid cold stabilization of wine by filtration. Am. J. Enol. Vitic. 32: 138–143.Google Scholar
- Serrano, M., and P. Ribéreau-Gayon. 1981. “Prevention des precipitations de bitartrate de potassium par le procede Vinipal.” Conn. Vigne Vin 15: 142–145.Google Scholar
- Spector, T. 1978. “Refinement of the Coomassie Blue method of protein quantification.” Anal. Biochem. 86: 142–146.CrossRefGoogle Scholar
- Sudraud, R., and J. Cape. 1983. “Elimination du calcium du vin par le procede par contact utilisant du tartrate neutre de calcium.” Rev. Fr. Oenol. 91: 19–22.Google Scholar
- Tal, M., A. Silberstein, and E. Nusser. 1980. “Why does Coomassie Brillant Blue R interact differently with different proteins? A partial answer.” J. Biol. Chem. 260: 9976–9980.Google Scholar
- Trioli, G. and C. S. Ouch. 1989. “Causes for inhibition of an acid urease from lactobacillus fermentus.” Am. J. Enol. Vitic. 40: 245–252.Google Scholar
- Trousdale, E. K., and R. B. Boulton. 1987. “The fractionation and quantification of wine proteins by three HPLC methods.” Proc. 38th. Ann. Meeting, Am. Soc. Enol. Vitic, p. 16.Google Scholar
- Tyson, P. J., E. S. Luis, W. R. Day, and T. H. Lee. 1981. “Estimation of soluble protein in must and wine by high performance liquid chromatography.” Am. J. Enol. Vitic. 32: 241–243.Google Scholar
- Tyson, P. J., E. S. Luis, and T. H. Lee. 1980. “Soluble protein levels in grapes and wine.” Proc. Cent. Symp., Davis, CA: University of California.Google Scholar
- Usseglio-Tomasset, L. 1976. “Les colloides glucidiques soluble des mouts et des vins.” Conn. Vigne Vin 10: 193–226.Google Scholar
- Usseglio-Tomasset, L., and R. Di Stefano. 1977. “Osservazioni sui costituenti azotati dei colloidi dei mosti, dei vini e dei colloidi ceduti dal lievito al substrato fermentativo.” Rev. Vitic. Enol. 11: 1–20.Google Scholar
- Usseglio-Tomasset, L., M. Ubigli, and L. Barbero. 1992. “The potassium acid tartrate oversaturation in wines.” Bull. O.I.V. 739–740: 703–719.Google Scholar
- Vallee, D., A. Bagard, C. Bloy, P. Bloy, and L. Bourde. 1990. “Appreciation de la stabilite tartrique des vins par la temperature de saturation -Influence du facteur temps sur la stabilite (duree de stockage).” Rev. Fr. Oenol. 126: 51–61.Google Scholar
- Vialatte, C. 1984. “Test de stabilite bitartrate de potassium (Boulton).” Rev. Oenol. 34: 20.Google Scholar
- Vialatte, G. 1979. “Stabilisation des vins en continu, vis-a-vis, du bitartrate de potassium.” Rev. Fr. Oenol. 73: 67–71.Google Scholar
- Villettaz, J.-C. 1988. “Les colloides du mout et du vin.” Rev. Fr. Oenol. 111: 23–27.Google Scholar
- Villettaz, J.-C., D. Steiner, and H. Trogus. 1984. “The use of a beta-glucanase as an enzyme in wine clarification and filtration.” Am. J. Enol. Vitic. 35: 253–256.Google Scholar
- Walter, E. G. 1970. “Stabilization of wine by passage through a column of potassium hydrogen tartrate crystals.” U.S. Patent 3,498, 795.Google Scholar
- Waters, E. J., W. Wallace, and P. J. Williams. 1991. “Heat haze characteristics of fractionated wine proteins.” Am. J. Enol. Vitic. 42: 123–127.Google Scholar
- Waters, E. J., W. Wallace, M. E. Tate, and P. J. Williams. 1993. “Isolation and partial characterization of a natural haze protective factor from wine.” J. Agric. Food Chem. 41: 724–730.CrossRefGoogle Scholar
- Willy, J., R. Weinard, and H. Dietrich. 1991. “Beeinflusst Crossflow die Weinsteinstabilitât?” Weinwirt. Tech. 127: 24–29.Google Scholar
- Wucherpfennig, K, and H. Dietrich. 1983. “Bestimmung des Kolloidgehaltes von Weinen.” Lebens. 15: 246–253.Google Scholar
- Wucherpfennig, K., and H. Dietrich. 1989. “The importance of colloids for clarification of musts and wines.” Vitic. Enol. Sci. 44: 1–12.Google Scholar
- Wucherpfennig, K., H. Dietrich, and R. Fauth. 1984. “über den Einfluss von Polysacchariden auf die Klärung und Filterfähigkeit von Weinen unter besonderer Berücksichtigung des Botrytisglucans.” Deut. Lebens. Rund. 80: 38–44.Google Scholar
- Würdig, G. 1976. “Schleimsäure—ein Inhaltsstoff von Weinen aus botrytisfaulem Lesegut.” Weinwirt. 112(1–2):16–17.Google Scholar
- Würdig, G., T. Müller, and G. Friedrich. 1980a. “Methode pour caracteriser la stabilite du vin vis-a-vis du tartre par determination de la temperature de saturation.” Bull. 0.LV. 613: 220–228.Google Scholar
- Würdig, G., T. Müller, and G. Friedrich. 1980b. “Untersuchungen zur Weinsteinstabilität. Bestimmung der Sättigungstemperatur von Weinen durch Leitfähigkeitsmessung.” Weinwirt. 116: 720–726.Google Scholar
- Würdig, G., T. Müller, and G. Friedrich. 1983. “Prüfung auf Weinsteinstabilität in Traubensäften durch Bestimmung der Weinsteinsättigungstemperatur.” Flüss. Obst. 50: 564–568.Google Scholar
- Würdig, G., T. Müller, and G. Friedrich. 1985. “Untersuchungen zur Weinsteinstabilität. 3. Mitteilung: Bestimmung der Weinsteinsättigungstemperatur durch verbesserte Leitfähigkeitmessung.” Weinwirt. Tech. 121: 188–191.Google Scholar
- Yokotsuka, K., K Nozuki, and T. Kushida. 1983. “Turbidity formation caused by interaction of must proteins with wine tannins.” J. Ferm. Technol. 61: 413–416.Google Scholar
- Yokotsuka, K, and V. L. Singieton. 1987. “Interactive precipitation between graded peptides from gelatin and specific grape tannin fractions in wine-like model solutions.” Am. J. Enol. Vitic. 38: 199–206.Google Scholar
- Yokotsuka, K., M. Yoshii, T. Aihara, and T. Kushida. 1977. “Isolation and characterization of proteins from juices, musts and wines from Japanese grapes.” J. Ferm. Technol. 55: 510–515.Google Scholar
- Zimmer, E., C.-D. Patz, and H. Dietrich. 1992. “Direct determination of molecular weight distribution of high molecular substances in wines and juices.” Vitic. Enol. Sci. 47: 121–129.Google Scholar