Yeast and Biochemistry of Ethanol Fermentation

  • Roger B. Boulton
  • Vernon L. Singleton
  • Linda F. Bisson
  • Ralph E. Kunkee


The transformation of grape juice into wine is essentially a microbial process. As such, it is important for the enologist to have an understanding of yeast and fermentation biochemistry as the fundamental basis of the winemaking profession. The alcoholic fermentation, the conversion of the principal grape sugars glucose and fructose to ethanol and carbon dioxide, is conducted by yeasts of the genus Saccharomyces, generally by S. cerevisiae and S. bayanus. The current use of the old term bayanus for the yeast closely related to S. cerevisiae is controversial (see Section A3c); but we expect bayanus to become once more an accepted appellation (Vaughn-Martini and Kurtzman 1985).


Yeast Strain Hydrogen Sulfide High Alcohol Ethanol Fermentation Grape Juice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agree, T. E., E. P. Sonoff, and D. F. Splittstoesser. 1972. “Effect of yeast strain and type of sulfur compound on hydrogen sulfide production.” Am. J. Enol. Vitic. 23: 6–9.Google Scholar
  2. Adams, A. M. 1960. “Yeasts in horticultural soils.” In 1959–60 Report of the Horticultural Experiment Station and Products Laboratory,pp. 79–82. Toronto. Ontario Department of Agriculture.Google Scholar
  3. Agenbach, W. A. 1977. “A study of must nitrogen content in relation to incomplete fermentations, yeast production and fermentation.” Proc. S. Afric. Soc. Enol. Vitic. 66–87.Google Scholar
  4. Aiba, S., and M. Shoda. 1969. “Reassessment of the product inhibition in alcoholic fermentation.” J. Ferm. Technol. 47: 790–794.Google Scholar
  5. Aiba, S., M. Shoda, and M. Nagatani. 1968. “Kinetics of product inhibition in alcohol fermentation.” Biotech. Bioeng. 10: 845–864.CrossRefGoogle Scholar
  6. Amerine, M. A., H. W. Berg, R. E. Kunkee, C. S. Ough, V. L. Singleton, and A. D. Webb. 1980. In Technology of Winemaking, 4th ed., Westport, CT, Avi Publishing Co.Google Scholar
  7. Amerine, M. A., and R. E. Kunkee. 1968. “Microbiology of winemaking.” Ann. Rev. Microbiol. 22: 323–353.CrossRefGoogle Scholar
  8. Aquilera, A., and T. Benitez. 1985. “Role of mitochondria in ethanol tolerance of Saccharomyces cerevisiae.” Arch. Microbiol. 142: 389–392.CrossRefGoogle Scholar
  9. Augustyn, O. P. H., and J. L. F. KocK. 1989. “Differentiation of yeast species, and strains within a species, by cellular fatty acid analysis. 1. Application of an adapted technique to differentiate between strains of Saccharomyces cerevisiae.” J. Microbiol. Meth. 10: 9–23.CrossRefGoogle Scholar
  10. Ayräpää, T. 1973. “Studies on the formation of higher alcohols and esters by brewers’ yeast.” In, Proceedings of the Third International Specialized Symposium on Yeasts, H. Suomaleinen, Ed., pp. 31–45, Otaniemi/Helsinki.Google Scholar
  11. Bartholomew, J. E., and T. Mivrwer. 1950. “A simplified bacterial spore stain.” Stain Technol. 25: 153–156.Google Scholar
  12. Beavan, M. J., C. Charpentier, and A. H. Rose. 1982. “Production and tolerance of ethanol in relation to phospholipid fatty-acyl composition of Saccharomyces cerevisiae NCYC 431.” J. Gen. Microbiol. 128: 1447–1455.Google Scholar
  13. Beck, C., and H. K. Von meyenburg. 1968. “Enzyme pattern and aerobic growth of Saccharomyces cerevisiae under various degrees of glucose limitation.” J. Bacteriol. 96: 479–486.Google Scholar
  14. Belin, J.-M. 1972. “Recherches sur la répartition des levures à surface de la grappe de raisin.” Vitis 11: 135–145.Google Scholar
  15. Belin, J.-M., and P. Henry. 1972. “Contribution à l’étude écologique des levures dans le vignoble. Répartition des levures à la surface du pédicelle et de la baie de raisin. ” C. R. Acad. Sci. Paris 274D: 2318–2320.Google Scholar
  16. Bell, A. A., C. S. Ough, and W. M. Kliewer. 1979. “Effects on must and wine composition, rates of fermentation and wine quality of nitrogen fertilization of Vitis vinifera var. Thompson Seedless grapevines.” Am. J. Enol. Vitic. 30: 124–129.Google Scholar
  17. Bisson, L. F., and R. E. Kunkee. 1991. “Microbial interactions during wine production.” In Mixed cultures in Biotechnology, J. G. Zeikus and E. A. Johnson, Eds., pp. 37–68. New York: McGraw-Hill.Google Scholar
  18. Bisson, L. F., and J. Thorner. 1982. “Mutations in the PHO80 gene confer permeability to 5’mononucleotides in Saccharomyces cerevisiae.” Genetics 102: 341–359.Google Scholar
  19. Blondin, B., and F. Vezinhet. 1988. “Identification de souches de levures oenologiques par leurs caryotypes obtenus en électrophorèse en champs plusès.” Rev. Fr. Oenol. 28 (115): 7–11.Google Scholar
  20. Bouix, M., and J. Y. Leveau. 1983. “Electrophoretic study of the macromolecular compounds excreted by yeasts: Application to differentiation between strains of the same species.” Biotechnol. Bioeng. 25: 133–142.CrossRefGoogle Scholar
  21. Boulton, R. 1979. “A kinetic model for the control of wine fermentations.” Biotechnol. Bioeng. Symp. Series, No. 9: 167–177.Google Scholar
  22. Boulton, R. 1980. “Prediction of fermentation behavior by a kinetic model.” Am. J. Enol. Vitic 31: 40–45.Google Scholar
  23. Brendel, M., W. W. Fath, and W. Laskowski. 1975. “Isolation and characterization of mutants of Saccharomyces cerevisiae able to grow after inhibition of DTMP synthesis.” Meth. Cell Biol. 11: 287–294.CrossRefGoogle Scholar
  24. Brown, S. W., S. G. Oliver, D. E. F. Harrison, and R. C. Righelato. 1981. “Ethanol inhibition of yeast growth and fermentation: differences in the magnitude and complexity of the effect.” Appi. Microbiol. Biotech. 11: 151–155.CrossRefGoogle Scholar
  25. Busturia, A., and R. Lagunas. 1986. “Catabolite inactivation of the glucose transport system in Saccharomyces cerevisiae.” J. Gen. Micro. 132: 379–385.Google Scholar
  26. Cantagrel, R., P. Symonds, and J. Carles. 1982. “Composition en acides amines du moût en fonction du cépage et de la technologie et son influence sur la qualité du vin.” Sci. Aliment. 2: 109–142.Google Scholar
  27. Cardoso, H., and C. Lead. 1992. “Mechanisms underlying the low and high euthalpy death induced by short-chair monocarboxylic acids and ethanol in Saccharomyces cerevisiae.” Micro. Biotech. 38: 388–392.Google Scholar
  28. Carie, G. F., M. Frank, and M. V. Olson. 1986. “Electrophoretic separation of large DNA molecules by periodic inversion of the electric field.” Science 232: 65–68.CrossRefGoogle Scholar
  29. Cartwright, C. P., J.-R. Juroszek, M. J. Beavan, F. M. S. Ruby, S. M. F. Demorias, and A. H. Rose. 1986. “Ethanol dissipates the proton-motive force across the plasma membrane of Saccharomyces cerevisiae.” J. Gen. Microbiol. 132: 369–377.Google Scholar
  30. Cartwright, C. P., F. J. Veazey, and A. H. Rose. 1987. “Effect of ethanol on activity of the plasma membrane ATPase in and accumulation of glycine by Saccharomyces cerevisiae.” J. Gen. Microbiol. 133: 857–865.Google Scholar
  31. Casey, G. P., C. A. Magnus, and W. M. Ingledew. 1984. “High-gravity brewing: effects of nutrition on yeast composition fermentative ability and alcohol production.” Appi. Env. Micrbiol 48: 639–646.Google Scholar
  32. Castelli, T. 1957. “Climate and agents of wine fermentation.” Am. J. Enol. 8: 149–156.Google Scholar
  33. Castor, J. G. B., and T. E. Archer. 1956. “Amino acids in must and wines, proline, serine and threonine.” Am. J. Enol. 7: 19–25.Google Scholar
  34. Chapman, C., and W. Bartley. 1968. “The kinetics of enzyme changes in yeast under conditions that cause the loss of mitochondria.” Biochem. J. 107: 455–465.Google Scholar
  35. Chatonnet, P., D. Dubourdieu, J.-N. Boidron, and V. Lavigne. 1993. “Synthesis of volatile phenols by Saccharomyces cerevisiae in wines.” J. Sci. Food Agric. 62: 191–202.CrossRefGoogle Scholar
  36. Cherest, H., and Y. Surdin-Kerjan. 1992. “Genetic analysis of a new mutation conferring cysteine anxotrophy in Saccharomyces cerevisiae: Updating of the sulfure metabolism pathway.” Genetics 130: 51–58.Google Scholar
  37. Chin, H.-W. 1989. “Relationship between the fermentation performances of various yeast strains and their alcohol dehydrogensase activities.” M.S. thesis, Davis, CA: University of California.Google Scholar
  38. Chu, G., D. Vollrath, and R. W. Davis. 1986. “Separation of large DNA molecules by contour-clamped homogeneous electric fields.” Science 234: 1582–1585.CrossRefGoogle Scholar
  39. Cirillo, V. P. 1968. “Relationship between sugar structure and competition for the sugar transport system in baker’s yeast.” J. Bacteriol. 95: 603–611.Google Scholar
  40. Cooper, T. G. 1982a. “Nitrogen metabolism in Saccharomyces cerevisiae.” In The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression, J. N. Strathern, E. W. Jones, and J. R. Broach, Eds., pp. 39–100. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
  41. Cooper, T. G. 1982b. “Transport in Saccharomyces cerevisiae.” In The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression, J. N. Strathern, E. W. Jones, and J. R. Broach, Eds., pp. 399–462. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
  42. Cooper, T. G., and R. Sumrada. 1975. “Urea transport in Saccharomyces cerevisiae.” J. Bacteriol. 121: 571–576.Google Scholar
  43. Cottrell, M., B. C. Viljoen, J. L. F. Kock, and P. M. Lategan. 1986. “The long-chain fatty acid compositions of species representing the genera Saccharomyces, Schwanniomyces, and Lipomyces.” J. Gen. Microbiol. 132: 2401–2403.Google Scholar
  44. Crabtree, H. G. 1929. “Observations on carbohydrate metabolism of tumors.” Biochem. J. 23: 536–545.Google Scholar
  45. De Deken, R. H. 1966. “The Crabtree effect: a regulatory system in yeast.” J. Gen. Microbiol. 44: 129–156.Google Scholar
  46. De Mora, S. J., R. Eschenbruch, S. J. Knowles, and D. J. Spedding. 1986. “The formation of dimethyl sulfide during fermentation using a wine yeast.” Food Microbiol. 3: 27–32.CrossRefGoogle Scholar
  47. Degré, R., D. Y. Thomas, J. Ash, K. Mailhiot, A. Moiun, and C. Dubord. 1989. “Wine yeast strains identification.” Am. J. Enol. Vitic. 40: 309–315.Google Scholar
  48. Delfini, D., and C. Parvex. 1989. “Study on pH and total acidity variations during alcoholic fermentation. Importance of the ammoniacal salt added.” Riv. Vitic. Enol. 42: 43–56.Google Scholar
  49. Delteil, D., and T. Aizac. 1989. “Yeast inoculation techniques with a ‘marked’ yeast strain.” Pract. Winery Vineyard, May/June:43–47.Google Scholar
  50. Denis, C. L., M. Ciriacy, and E. T. Young. 1983. “MRNA levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease upon growth on a non-fermentable carbon source.” J. Biol. Chem. 258: 1165–1171.Google Scholar
  51. Dickinson, J. R., and I. W. Dawes. 1992. “The catabolism of branch-chain amino acids occurs via 2-oxoacid dehydrogenase in Saccharomyces cerevisiae.” J. Gen. Microbiol. 138: 2029–2033.Google Scholar
  52. Dickinson, J. R., and V. Norte. 1993. “A study of branched-chain amino acid aminotransferase and isolation of mutations affecting the catabolism of branched-chain amino acid in Saccharomyces cerevisiae.” FEBS 326: 29–32.CrossRefGoogle Scholar
  53. Dombeck, K. M., and L. O. Ingram. 1986. “Magnesium limitation and its role in apparent toxicity of ethanol during yeast fermentation.” Appl. Environ. Microbiol. 52: 975–981.Google Scholar
  54. Drysdale, G. S., and G. H. Fleet. 1989. “The effect of acetic acid bacteria upon the growth and metabolism of yeasts during the fermentation of grape juice.” J. App. Bacteriol. 67: 471–481.CrossRefGoogle Scholar
  55. Dubois, E., and M. Grenson. 1979. “Methylamine/ammonia uptake systems in Saccharomyces cerevisiae: Multiplicity and regulation.” Molec. Gen. Genetics 175: 67–76.CrossRefGoogle Scholar
  56. Dubos, R. 1988. Pasteur and Modern Science. Madison, WI: Science Tech Publishers.CrossRefGoogle Scholar
  57. Dubourdieu, D., P. Darriet, and P. Chatonnet. 1989. “Intervention of enzymatic systems of Saccharomyces cerevisiae on some precursors of grape aroma.” Paper presented at XIIth International Symposium Specialized on Yeast, September 18–22 1989 at Université Catholique de Louvain, Belgium.Google Scholar
  58. Dubourdieu, D., P. Darriet, and V. Lavigne. 1993. “Investigations on the varietal aroma of Sauvignon wines.” 10th International Oenological Symposium, Montreux, May 3–5 1993, pp. 258–267. Breisach: Internationale Interessengemeinschaft für Kellertechnik u. Betriebsführung.Google Scholar
  59. Dubourdieu, D., P. Darriet, C. Ollivier, J.-N. Boidron, and P. Ribéreau-gayon. 1988. “Rôle de la levure Saccharomyces cerevisiae dans l’hyrolyse enzymatique des hétérosides terpéniques du jus de raisin. ” C. R. Acad. Sci. Paris Ser III 306: 489–493.Google Scholar
  60. Dubourdieu, D., A. Sokol, J. Zucca, P. Thalouarn, A. Dattee, and M. Aigle. 1987. “Identification des souches de levures isolées de vins par analyse de leur ADN mitochondrial.” Conn. Vigne Vin 21: 267–278.Google Scholar
  61. Duntze, W., D. Neumann, J. M. Gancedo, W. Atzpodien, and H. Holzer. 1969. “Studies on the regulation and localization of the glyoxylate cycle enzymes in Saccharomyces cerevisiae.” Eur. J. Biochem. 10:83–89.CrossRefGoogle Scholar
  62. Egbosimba, E. E., E. Linus, C. Okafor, and J. C. Slaughter. 1988. “Control of ammonia uptake from malt extract medium by Saccharomyces cerevisiae.” J. Inst. Brew. 94: 249–252.Google Scholar
  63. Egbosimba, E. E., and J. C. Slaughter. 1987. “The influence of ammonium permease activity and carbon source on the uptake of ammonium from simple defined media by Saccharomyces cerevisiae.” J. Gen. Micro. 133:375–379.Google Scholar
  64. Elhaliou, N., D. Picque, and G. Corrieu. 1987. “Mesures physiques permettant le suivi biologique de la fermentation alcoolique en oenologie.” Sci. Alim. 7: 241–265.Google Scholar
  65. Elskens, M. T., C. J. Jaspers, and M. J. Penninckx. 1991. “Glutathione as an endogenous sulphur source in the yeast Saccharomyces cerevisiae.” J. Gen. Micro. 137: 637–644.Google Scholar
  66. Eschenbruch, R. 1978. “Sulphide formation by wine yeasts.” Proc. 5th Intl. Oenol. Symp, pp. 267–273. Auckland, New Zealand.Google Scholar
  67. Eschenbruch, R., and P. Bonish. 1976. “Production of sulphite and sulphide by low-and high-sulphite forming yeasts.” Arch. Microbiol. 107: 299–302.CrossRefGoogle Scholar
  68. Eschenbruch, R., S. J. De Mora, S. J. Knowles, W. K. Leonard, T. Forrester, And D. J. Spedding. 1986. “The formation of volatile sulphur compounds in unclarified grape juice.” Vitis 25: 53–57.Google Scholar
  69. Esposito, R. E., and S. Klapholz. 1981. “Meiosis and ascospore development.” In The Molecular Biology of the Yeast Saccharomyces, Life Cycle and Inheritance, J. N. Strathern, E. W. Jones, J. R. Broach, Eds., pp. 211–287. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
  70. Famuyiwa, O. O., and C. S. Ough. 1991. “Modification of acid urease activity by fluoride ions ana malic acid in wines.” Am. J. Enol. Vitic. 42: 79–80.Google Scholar
  71. Ferreras, J. M., R. Iglesias, and T. Girbes. 1989. “Effect of the chronic ethanol action on the activity on the general amino-acid permease from Saccharomyces cerevisiae var. ellipsoideus.” Biochim. Biophys. Acta. 979: 375–377.CrossRefGoogle Scholar
  72. Fischer, G. 1973. “Studies on fermentation bouquet in white table wines.” M.S. thesis, Davis, CA: University of California.Google Scholar
  73. Gardiner, K, and D. Patterson. 1988. “Transverse alternating electrophoresis.” Nature 331: 371–372.CrossRefGoogle Scholar
  74. Garrett, J. M. 1989. “Characterization of AAT1: A gene involved in the regulation of amino acid transport in Saccharomyces cerevisiae.” J. Gen. Micro. 135: 2429–2437.Google Scholar
  75. Giudici, P., and R. E. Kunkee. 1994. “The effect of nitrogen deficiency and sulfur-containing amino acids on the reduction of sulfate to hydrogen sulfide by wine yeast.” Am. J. Enol. Vitic. 45: 107–112.Google Scholar
  76. Goldstein, D. 1987. “Ethanol-induced adaptation in biological membranes.” Ann. N. Y. Acad. Sci. 492: 103: 111.Google Scholar
  77. Goniak, O. J., and A. C. Noble. 1987. “Sensory study of selected volatile sulfur compounds in white wine.” Am. J. Enol. Vitic. 38: 223–227.Google Scholar
  78. Grenson, M. 1969. “The utilization of exogenous pyrimidines and the recycling of uridine-5’-phosphate derivatives in Saccharomyces cerevisiae, as studied by means of mutants affected in pyrimidine uptake and metabolism.” Euro. J. Biochem11:249–260.CrossRefGoogle Scholar
  79. Grenson, M., M. Mousset, J. M. Wiame, and J. Bechet. 1966. “Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. I. Evidence for a specific arginine-transporting system.” Biochim. Biophys. Acta 127: 325–338.CrossRefGoogle Scholar
  80. Gubler, W. D. 1992. “Grape powdery mildew.” Practical Winery and Vineyard. Jan/Feb:12–16.Google Scholar
  81. Guyion, J. F. 1972. “Higher alcohols in beverage brandy: Feasibility of control of levels.” Wines and Vines 53: 37–40.Google Scholar
  82. Guymon, J. F., and J. E. Heitz. 1952. “The fusel oil content of California wines.” Food Technol. 6: 359–362.Google Scholar
  83. Guymon, J. F., J. L. Ingraham, and E. A. Crowell. 1961. “The formation of n-propyl alcohol by Saccharomyces cerevisiae.” Arch Biochem. Biophys. 95: 163–168.CrossRefGoogle Scholar
  84. Haeuet, J. N., B. Craneguy, J. Zucca, and A. Pollard. 1988. “Caractérisation de différentes souches industrielles de levures oenologiques par les profils de restriction de leur ADN mitochondrial.” Prog. Agric. Vitic. 105: 328–333.Google Scholar
  85. Hammond, J. R. M. 1993. “Brewer’s yeasts.” In The Yeasts, 2nd ed., Vol. 5, A. H. Rose and J. S. Harrison, Eds., pp. 7–67. London: Academic Press.CrossRefGoogle Scholar
  86. Hawksworth, D. L., B. C. Sutton, and G. C. Ainsworth. 1983. Ainsworth and Bisby’s Dictionary of the Fungi (Including the Lichens), 7th ed. Kew, Surrey: Commonwealth Mycological Institute.Google Scholar
  87. Henry, S. A. 1982. “The membrane lipids of yeast: biochemical and genetic studies.” In The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression, J. N. Stratern, E. N. Jones, and J. R. Broach, eds., pp. 101–158. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
  88. Henschke P. A., and V. Jiranek. 1991. “Hydrogen sulfide formation during fermentation: Effects of nitrogen composition in model grape musts.” In International Nitrogen Symposium on Grapes and Wine, J. M. Rantz, ed. Davis, CA: American Society for Enology and Viticulture.Google Scholar
  89. Hewitson, D. 1993. “Relationships between ammonium ion availability and hydrogen sulfide formation by Saccharomyces cerevisiae.” M.S. thesis, Davis, CA: University of California.Google Scholar
  90. Holzer, H. 1961. “Regulation of carbohydrate metabolism by enzyme competition.” Cold Spring Harbor Sym. Quan. Biol. 26: 277–288.CrossRefGoogle Scholar
  91. Horak, J. 1986. “Amino acid transport in eucaryotic microorganisms.” Biochim. Biophys. Acta. 864: 223–256.CrossRefGoogle Scholar
  92. Houtman, A. C., and C. S. Du Plessis. 1981. “The effect of juice clarity and several conditions promoting yeast growth or fermentation rate, the production of aroma components and wine quality.” S. Afric. J. Enol. Vitic. 2: 71–81.Google Scholar
  93. Houtman, A. C., J. Marais, and C. S. Du Plessis. 1980. “The possibilities of applying present-day knowledge of wine aroma components: Influence of several juice factors on fermentation rate and ester production during fermentation.” S. Afric. J. Enol. Vitic. 1: 27–33.Google Scholar
  94. Ilagan, R. D. 1979. “Studies on the Sporulation of Dekkera.” M.S. thesis, Davis, CA: University of California.Google Scholar
  95. Ingledew, W. M. 1993. “Yeasts for production of fuel ethanol.” In, The Yeasts, 2nd ed., vol. 5, A. H. Rose and J. S. Harrison, Eds. pp. 245–291. London: Academic Press.CrossRefGoogle Scholar
  96. Ingraham, J. L., and J. F. Guymon. 1960. “The formation of higher aliphatic alcohols by mutant strains of Saccharomyces cerevisiae.” Arch. Biochem. Biophys. 88: 157–166.CrossRefGoogle Scholar
  97. Ingram, L. O., and T. M. Burrke. 1984. “Effects of alcohol on microorganisms.” Adv. Microbial Physiol. 25: 253–300.CrossRefGoogle Scholar
  98. Jazwinski, S. M. 1993. “Genes of youth: Genetics of aging in baker’s yeast.” ASM News 59: 172–178.Google Scholar
  99. Jiménez, J., and N. Van Uden. 1985. “Use of extra-cellular acidification for the rapid testing of alcohol tolerance in yeast.” Biotech. Bioeng. 27: 1596–1598.CrossRefGoogle Scholar
  100. Jiranek V., and P. A. Henschke. 1991. “Assimilable nitrogen: Regulator of hydrogen sulfide production during fermentation.” Aust. Grape. and Wine (325):27–30.Google Scholar
  101. Jiranek, V., P. Langridge, and P. A. Henschke. 1991. “Yeast nitrogen demand: Selection criterion for wine yeasts for fermenting low nitrogen musts.” pp. 266–269. In Proceedings of the International Symposium on Nitrogen in Grapes and Wine,Davis, CA: American Society for Enology and Viticulture.Google Scholar
  102. Johnston, J. 1983. “Substrate Preference in Wine Yeast.” M.S. thesis, Davis, CA: University of California.Google Scholar
  103. Jones, M., and J. S. Pierce. 1964. “Adsorption of amino acids from wort by yeasts.” J. Inst. Brewing 70: 307–315.Google Scholar
  104. Jones, R. S., and C. S. Ough. 1985. “Variations in the percent ethanol v/v per °Brix conversions of wines from different climatic regions.” Am. J. Enol. Vitic. 36: 268–270.Google Scholar
  105. Jost, P., and A. Piendl. 1975. “Technological influences on the formation of acetate during fermentation.” J. Am. Soc. Brew. Chem. 34: 31–37.Google Scholar
  106. Juroszek, J. R., O. Raimbault, M. Feuillat, and C. Charpentier. 1987. “A new method for determination of ethanol tolerance in vinification yeast: Measurement of glucose-induced proton movements.” Am. J. Enol. Vitic. 38: 336–341.Google Scholar
  107. Kalmokoff, M. L., and W. M. Ingledew. 1985. “Evaluation of ethanol tolerance in selected Saccharomyces strains.” J. Am. Soc. Brew. Chem. 43: 189–196.Google Scholar
  108. Killian E., and C. S. Ough. 1979. “Fermentation esters-Formation and retention as affected by fermentation temperature.” Am. J. Enol. Vitic. 30: 301–305.Google Scholar
  109. Kirsop, B. H. 1982. “Developments in beer fermentation.” Top. Enzyme. Ferment. Biotechnol. 6: 79–131.Google Scholar
  110. Kitamoto, K, K Yoshizawa, Y. Ohsumi, and Y. Anraku. 1988. “Dynamic aspects of vacuolar and cytosolic amino acid pools of Saccharomyces cerevisiae.” J. Bacteriol. 170: 2683–2686.Google Scholar
  111. Kodama, K. 1993. “Saké-brewing yeasts.” In The Yeasts, 2nd ed., Vol. 5, A. H. Rose and J. S. Harrison, Eds., pp. 129–168. London: Academic Press.CrossRefGoogle Scholar
  112. Koshinsky, H. A., R. H. Cosby, and G. G. Khachatourians. 1992. “Effects of T-2 toxin on ethanol production by Saccharomyces cerevisiae.” Biotech. App. Biochem. 16: 275–286.Google Scholar
  113. Korvi, A. 1967. “Properties of the sugar carrier in baker’s yeast. II. Specificity of transport.” Folia Microbiol. 12: 121–31.CrossRefGoogle Scholar
  114. Kraus, J. K, G. Reed, and J. C. Villettaz. 1983. “Levures sèches actives de vinification Ife partie: fabrication et caractéristiques.” Conn. Vigne Vin. 17: 93–103.Google Scholar
  115. Kiwis, J. K, G. Reed, and J. C. Villettaz. 1984. “Levures sèches actives de vinification 2e partie et fin: utilisation et évaluation.” Conn. Vigne Vin. 18: 1–26.Google Scholar
  116. Kreger-vanrij, N. J. W. 1984. The Yeasts, A Taxonomic Study. Amsterdam: Elsevier Science Publishers.Google Scholar
  117. Kunkee, R. E. 1984. “Selection and modification of yeasts and lactic acid bacteria for wine fermentation.” Food Microbiol. 1: 315–332.CrossRefGoogle Scholar
  118. Kunkee, R. E. 1990. “Some relationships between the strain of wine yeast and its tolerance to ethanol or to other products of alcoholic fermentation.” In Actualities OEnologiques 89, P. Ribéreau-Gayon and A. Lonvaud, Eds., pp. 238–242. Paris: Dunod.Google Scholar
  119. Kunkee, R. E. 1991. “Relationship between nitrogen content of must and sluggish fermentation.” In International Nitrogen Symposium on Grapes and Wine, J. M. Rantz, Ed., pp. 148–155. Davis, CA: American Society for Enology and Viticulture.Google Scholar
  120. Kunkee, R. E., and M. A. Amerine. 1968. “Sugar and alcohol stabilization of yeast in sweet wine.” Aßßí. Microbiol. 16: 1067–1075.Google Scholar
  121. Kunkee, R. E., and M. A. Amerine. 1970. “Yeasts in wine-making.” In The Yeasts, Vol. 3, A. H. Rose, and J. S. Harrison, Eds., pp. 50–7L London: Academic Press.Google Scholar
  122. Kunkee, R. E., and L. F. Bisson. 1993. “Wine-making yeasts.” In The Yeasts, 2nd ed., Vol. 5, A. H. Rose and J. S. Harrison, Eds., pp. 69–127. London: Academic Press.CrossRefGoogle Scholar
  123. Kunkee, R. E., J. F. Guymon, and E. A. Crowell. 1966. “Formation of n-propyl alcohol by cell-free extracts of Saccharomyces cerevisiae.” J. Inst. Brew. 72: 530–536.Google Scholar
  124. Kunkee, R. E., J. F. Guymon, and E. A. Crowell. 1972. “Studies on control of higher alcohol formation by yeasts through metabolic inhibition.” 1st Specialized International Symposium on Yeasts, A. Kockova-Kratochivilova and E. Minarik. Eds., Bratislava, Slovakia: Publishing House of the Slovak Academy of Sciences.Google Scholar
  125. Kunkee, R. E., S. R. Snow, and C. Rous. 1983. “Method for reducing fusel oil in alcoholic beverages and yeast strain useful in that method.” U.S. Patent 4,374, 859.Google Scholar
  126. Kunkee, R. E., and M. R. Vilas. 1994. “Toward a better understanding of the relationship between yeast strain and flavor production during vinifications: Flavor effects in vinifications of a nondistinct variety of grapes by several strains of wine yeast.” Vitic. Enol. Sci. 49: 46–50.Google Scholar
  127. Kurtzman, C. P. 1973. “Formation of hyphae and chlamydospores by Cryptococcus laurentii.” My–cologia 65: 388–395.Google Scholar
  128. Lafon-lafourcade, S., F. Larue, P. Bréchot, and P. Ribéreau-gayon. 1977. “Steroids survival factors of yeasts during the process of alcoholic fermentation of grape must.” Compt. Rend. Acad. Sci. 284D, 1939–1942.Google Scholar
  129. Lafon-lafourcade, S., F. Larue, and P. Ribéreau-gayon. 1979. “Evidence for the existence of survival factors as an explanation for some peculiarities of yeast growth especially in grape must of high sugar concentration.” Appi. Environ. Microbiol. 38: 1069–1073.Google Scholar
  130. Lagunas, R. 1979. “Energetic irrelevance of aerobiosis for S. cerevisiae growing on sugars.” Mol. Cell. Biochem. 27, 139–148.CrossRefGoogle Scholar
  131. Lagunas, R. 1981. “Is Saccharomyces cerevisiae a typical facultative ‘anaerobe?’ ” Trends Biochem. Sci ( Pers. Ed ) 6: 201–203.CrossRefGoogle Scholar
  132. Lagunas, R., C. Dominguez, A. Busturia, and M. J. Saez. 1982. “Mechanisms of appearance of the Pasteur effect in Saccharomyces cerevisiae. Inactivation of the sugar transport systems.” J. Bacteriol. 152: 19–25.Google Scholar
  133. Large, P. J. 1986. “Degradation of organic nitrogen compounds by yeasts.” Yeast 2: 1–34.CrossRefGoogle Scholar
  134. Lead, C., and N. van Uden. 1984a. “Effect of ethanol and other alkanols on the general amino acid permease of Saccharomyces cerevisiae.” Biotech. Bioeng. 26: 403–405.CrossRefGoogle Scholar
  135. lead, C., and N. Van Uden. 1984b. “Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae.” Biochim. Biophys. Acta 774: 43–48.CrossRefGoogle Scholar
  136. Leao, C., and N. Van Uden. 1985. “Effects of ethanol and other alkanols on the temperature relations of glucose transport and fermentation in Saccharomyces cerevisiae.” App. Microbiol. Biotechnol. 22: 359–363.CrossRefGoogle Scholar
  137. Lee. S. O., and R. E. Kunkee. 1988. “Relationship between yeast strain and production or uptake of medium chain fatty acids during fermentation.” 1988 Technical Abstracts, p. 10. Annual Meeting, American Society for Enology and Viticulture, June 22–24 1988, Reno, Nevada.Google Scholar
  138. Lewis, M. J., and H. J. Phaff. 1964. “Release of nitrogenous substances by brewer’s yeast. III. Shock excretion of amino acids.” J. Bacteriol. 87: 1390–1396.Google Scholar
  139. Lodder, J. 1970. The Yeasts, A Taxonomic Study. Ams- terdam: North-Holland Publishing Company.Google Scholar
  140. Lodder, J., and N. J. W. Kreger-Van Rij. 1952. The Yeasts A Taxonomic Study. Amsterdam: North-Holland Publishing Company.Google Scholar
  141. Macrostie, S. W. 1974. “Electrode measurement of hydrogen sulfide in wine.” M.S. thesis, Davis, CA: University of California.Google Scholar
  142. Macy, J., and M. W. Miller. 1983. “Anaerobic growth of Saccharomyces cerevisiae in the absence of oleic acid and ergosterol?” Arch. Microbiol. 134: 64–67.CrossRefGoogle Scholar
  143. Malfeito-ferreira, M., J. P. Miller-guerra, and V. Loureiro. 1990. “Proton extrusion as an indicator of the adaptive state of yeast starters for the continuous production of sparkling wines.” Am. J. Enol. Vitic. 41: 219–222.Google Scholar
  144. Malfeito-ferreira, M., A. ST. Aubyn, and V. Loureiro. 1989. “Rapid testing to differentiate between fermenting and spoilage yeasts in wine.” Yeast 5 ( Spec. Issue ), S47 - S51.Google Scholar
  145. Marsh, G. L. 1958. “Alcohol yield: Factors and methods.” Am. J. Enol. 9: 53–58.Google Scholar
  146. Martini, A., and A. V. Martini. 1990. “Grape must fermentation-past and present.” In Yeast Technology, J. F. T. Spencer and D. M. Spencer, Eds., pp. 105–123. Berlin: Springer-Verlag.Google Scholar
  147. Massantini, R., and R. E. Kunkee. 1989. “Influence of temperature on alcohol dehydrogenase in yeast during vinification.” Yeast 5: S201 - S205.Google Scholar
  148. Mccann, J., E. Choi, E. Yamasaki, and B. N. Ames. 1975. “Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals.” Proc. Nat. Acad. Sci. USA. 72: 5135–5139.CrossRefGoogle Scholar
  149. Mccusker, J. H., D. S. Perlin, and J. E. Haber. 1987. “Pleiotropic plasma membrane ATPase mutations of Saccharomyces cerevisiae.” Molec. Cell. Biol. 7: 4082–4088.Google Scholar
  150. Messenguy, F. 1987. “Multiplicity of regulatory mechanisms controlling amino acid biosynthesis in Saccharomyces cerevisiae.” Microbiol. Sciences 4: 150–153.Google Scholar
  151. Middlehoven, W. J. 1964. “The pathway of arginine breakdown in Saccharomyces cerevisiae.” Biochim. Biophys. Acta 93: 650–652.CrossRefGoogle Scholar
  152. Middlehoven, W. J., J. Van Euk, R.Van Renesse, and J. M. Blijham. 1978. “A mutant of Saccharomyces cerevisiae lacking catabolic NAD +-specific glutamate dehydrogenase.” Antonie van Leeuwen. 44: 311–320.CrossRefGoogle Scholar
  153. Mirvish, S. S. 1968. “The carcinogenic action and metabolism of urethan and N-hydroxyurethan.” Adv. Cancer Res. 11: 1–42.CrossRefGoogle Scholar
  154. Molan, P. S., M. Edwards, and R. Eschenbruch. 1982. “Foaming in wine making. II: Separation and partial characterization of foam inducing proteins excreted by pure culture wine yeasts.” Eur. J. Appl. Microbiol. Biotechnol. 16: 110–113.CrossRefGoogle Scholar
  155. Monk, P. R. 1986. “Formation, utilization and excretion of hydrogen sulphide by wine yeast.” Aust. N.Z. Wine Ind. J. 1:10–16.Google Scholar
  156. Monk, P. R., D. Hoox, and B. M. Freeman. 1986. “Amino acid metabolism by yeasts.” Proceedings of the Sixth Australian Wine Industry Technical Conference, pp. 129–133.Google Scholar
  157. Monod, J. 1949. “The growth of bacterial cultures.” Ann. Rev. Microbiol. 3: 371–394.CrossRefGoogle Scholar
  158. Monteiro, F. F., and L. F. Bisson. 1991a. “Amino acid utilization and urea formation during vinification.” Am. J. Enol. Vitic. 42: 199–208.Google Scholar
  159. Monteiro, F. F., and L. F. Bisson. 1991b. “Biological assay of nitrogen content of grape juice and prediction of sluggish fermentations.” Am. J. Enol. Vitic. 42: 47–57.Google Scholar
  160. Monteiro, F. F., and L. F. Bisson. 1992a. “Nitrogen supplementation of grape juice. I. Effect on amino acid utilization during fermentation.” Am. J. Enol. Vitic. 43: 1–10.Google Scholar
  161. Monteiro, F. F., and L. F.Bisson. 1992b. “Nitrogen supplementation of grape juice. II. Effect on amino acid and urea release following fermentation.” Am./. Enol. Vitic. 43: 11–17.Google Scholar
  162. Monteiro, F. F., and L. F. Bisson. 1992c. “Utilization of adenine by yeast during grape juice fermentation and investigation of the possible role of adenine as a precursor of urea.” Am. J. Enol. Vitic. 43: 18–22.Google Scholar
  163. Monteiro, F. F., E. K Trousdale, and L. F. Bisson. 1989. “Ethyl carbamate formation in wine: Use of radioactively labeled precursors to demonstrate the involvement of urea.” Am. J. Enol. Vitic. 40: 1–8.Google Scholar
  164. Müller-Späth, V. H., N. Moschtert, and G. Schäfer. 1978. “Beobachtungen bei der weinbereitung.” Die Weinwirt. 114: 1084–1089.Google Scholar
  165. Müller-Thurgau, H. 1889. “Ueber die Vergährung des traubenmostes durch zugesetzte Hefe.” Weinbau Weinhandel 7: 477–478.Google Scholar
  166. Nabais, R. C., I. Sä-Correia, C. A. Viegas, and J. M. Novais. 1988. “Influence of calcium ion on ethanol fermentation by yeasts.” Appi. Environ. Microbiol. 54: 2439–2446.Google Scholar
  167. Nagodawithana, T. W., and K H. Steinkraus. 1976. “Influence of the rate of ethanol production and accumulation on the viability of Saccharomyces cerevisiae in rapid fermentation.” Appi. Envir. Microbiol. 31: 158–162.Google Scholar
  168. Navarro, J. M., and G. Durand. 1978. “Alcoholic fermentation: Effect of temperature on ethanol accumulation in yeast cells.” Ann. Microbiol. 129B: 215–224.Google Scholar
  169. Ness, F., F. Lavalleé, D. Dubourdieu, M. Aigle, and L. Dulau. 1993. “Identification of yeast strains using the polymerase chain reaction.” J. Sci. Food Agric. 62: 89–94.CrossRefGoogle Scholar
  170. Neuberg, C. 1946. “The biochemistry of yeast.” Ann. Rev. Biochem. 15: 435–474.CrossRefGoogle Scholar
  171. Noble, A. C., and G. F. Bursick. 1984. “The contribution of glycerol to perceived viscosity and sweetness in white wine.” Am. J. Enol. Vitic. 35: 110–112.Google Scholar
  172. Nordstrom, K 1962. “Formation of ethyl acetate in fermentation with brewer’s yeast. III. Participation of coenzyme A.” J. Inst. Brew. 68: 398–407.Google Scholar
  173. Nordstrom, K 1963. “Formation of ethyl acetate in fermentation with brewer’s yeast. IV. Metabolism of acetyl-coenzyme A.” J. Inst. Brew. 69: 142–153.Google Scholar
  174. Nordstrom, K 1965. “Possible control of volatile ester formation in brewing.” Proc. Euro. Brew. Cony. 10th Congress, Stockholm, Sweden, pp. 195–208.Google Scholar
  175. Novak, M., P. Strehaiano, M. Moreno, and G. Goma. 1981. “Alcoholic fermentation: On the inhibitory effect of ethanol.” Biotech. Bioeng. 23: 201–211.CrossRefGoogle Scholar
  176. Nykanen, L. 1986. “Formation and occurrence of flavor compounds in wine and distilled alcoholic beverages.” Am. J. Enol. Vitic. 37: 86–96.Google Scholar
  177. Ough, C. S., and M. A. Amerine. 1963. “Regional, varietal and type influences on the degree Brix and alcohol relationship of grapes musts and wines.” Hilgardia 34: 585–599.Google Scholar
  178. Ough, C. S., and A. A. Bell. 1980. “Effects of nitrogen fertilization of grapevines on amino acid metabolism and higher-alcohol formation during grape juice fermentation.” Am. J. Enol. Vitic. 31: 12–123.Google Scholar
  179. Ough, C. S., E. A. Crowell, and R. B. Gutlove. 1988a. “Carbamyl compounds reactions with ethanol.” Am. J. Enol. Vitic. 39: 239–242.Google Scholar
  180. Ough, C. S., E. A. Crowell, and L. A. Mooney. 1988b. “Formation of ethyl carbamate precursors during grape juice (Chardonnay) fermentation. I. Effects of fortification on intracellular and extracellular precursors.” Am. J. Enol. Vitic. 39: 243–249.Google Scholar
  181. Ouch, C. S., M. Davenport, and K Joseph. 1989. “Effects of certain vitamins on growth and fermentation rate of several commercial active dry wine yeasts.” Am. J. Enol. Vitic. 40: 208–213.Google Scholar
  182. Ough, C. S., Z. Huang, D. An, and D. Stevens. 1991. “Amino acid uptake by four commercial yeasts at two different temperatures of growth and fermentation: Effects on urea excretion and reabsorption.” Am. J. Enol. Vitic. 42: 26–40.Google Scholar
  183. Ouch, C. S., and T. H. Lee. 1981. “Effect of vineyard nitrogen fertilization level on the formation of some fermentation esters.” Am. J. Enol. Vitic. 32: 125–127.Google Scholar
  184. Ouch, C. S., D. Stevens, T. Sendovski, Z. Huang, and D. An. 1990. “Factors contributing to urea formation in commercially fermented wines.” Am. J. Enol. Vitic. 41: 68–73.Google Scholar
  185. Oura, E. 1973. “Some aspects of the growth of baker’s yeast.” Proc. 3rd Intl. Spec. Symp. on Yeast. Helsinki, Finland, Part II, p. 215–230.Google Scholar
  186. Pamment, N. B. 1989. “Overall kinetics and mathematical modeling of ethanol inhibition in yeasts.” In, Alcohol Toxicity in Yeast and Bacteria, N. van Uden, Ed., pp. 1–75. Boca Raton, FL: CRC Press.Google Scholar
  187. Park, S. K. 1993. “Factors affecting formation of volatile sulfur compounds in wine.” PhD thesis, Davis, CA: University of California.Google Scholar
  188. Parlebas, N., and M. R. Chevallier. 1977. “Genetic studies of the pyrimidine permeases from Saccharomyces cerevisiae: Lack of intragenic complementation.” Molec. Gen. Genetics 154: 199–202.Google Scholar
  189. Pasteur, L. 1855. “Mémoire sur l’alcool amylique.” Compt. Rend. 41: 296–300.Google Scholar
  190. Pena, A., G. Cinco, A. Gomez-Puyon, and M. Tuena. 1972. “Effect of the pH of the incubation medium on glycolysis and respiration in Saccharomyces cerevisiae.” Arch. Biochem. Biophys. 153: 413–425.CrossRefGoogle Scholar
  191. Pena, A., J. P. Pardo, and J. Ramirez. 1987. “Early metabolic effects and mechanism of ammonium ion transport in yeast.” Arch. Biochem. Biophys. 253: 431–438.CrossRefGoogle Scholar
  192. Petering, J. E., P. A. Henschke and P. Langridge. 1991. “The Escherichia coli ß-glucuronidase gene as a marker for Saccharomyces yeast strain identification.” Am. J. Enol. Vitic. 42: 6–12.Google Scholar
  193. Phaff, H. J., M. N. Miller, and E. M. Mrak. 1978. The Life of Yeasts, 2nd ed. Cambridge, MA: Harvard University Press.Google Scholar
  194. Pierce, J. S. 1970. “Institute of brewing: Analysis committee measurement of yeast viability.” Inst. Brew J. London 76: 442–443.Google Scholar
  195. Pierce, J. S. 1982. “The Margaret Jones Memorial Lecture: Amino acids in malting and brewing.” J. Inst. Brewing 88: 228–233.Google Scholar
  196. Polakis, E. S., and W. Bartley. 1965. “Changes in the enzyme activities of Saccharomyces cerevisiae during aerobic growth on different carbon sources.” Biochem. J. 97: 284–297.Google Scholar
  197. Polakis, E. S., W. Bartley, and G. A. Meek. 1965. “Changes in the respiratory enzymes during the aerobic growth of yeast on different carbon sources.” Biochem J. 97: 298–302.Google Scholar
  198. Postma, E., C. Verduyn, W. A. Scheffers, and J. P. Van D11ken. 1989. “Enzymatic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae.” App. Environ. Microbiol. 55: 468–477.Google Scholar
  199. Pound, A. W. 1967. “Initiation of skin tumors in mice by homologs and N-substituted derivatives of ethyl carbamate.” Aust. J. Exp. Bio. Med. Sci. 45: 507–516.CrossRefGoogle Scholar
  200. Radler, F. 1992. “Yeasts-Metabolism of organic acids.” In Wine Microbiology and Biotechnology, G. H. Fleet, Ed., pp. 165–182. Camberwell, Victoria, Australia: Harwood Academic Publishers.Google Scholar
  201. Radler, F., and E. Fuca. 1970. “Conversion of L-malic acid during Saccharomyces cerevisiae fermentation.” Experientia 26: 731.CrossRefGoogle Scholar
  202. Ramey, D. D., and C. S. Ough. 1980. “Volatile ester hydrolysis on formation during storage of model solutions and wines.” J. Agric. Food Chem. 28: 928–934.CrossRefGoogle Scholar
  203. Rankine, B. C. 1963. “Nature, origin and prevention of hydrogen sulphide aroma in wines.” J. Sci. Food Agric. 14: 79–91.CrossRefGoogle Scholar
  204. Rankine, B. C. 1964. “Hydrogen sulphide produc- tion by yeasts.” J. Sci. Food Agric. 15: 872–877.CrossRefGoogle Scholar
  205. Rankine, B. C. 1966. “Decomposition of L-malic acid by wine yeasts.” J. Sci. Food Agric. 17: 312–316.CrossRefGoogle Scholar
  206. Rankine, B. C. 1967. “Formation of higher alcohols by wine yeasts, and relationship to taste thresholds.” J. Sci. Food Agric. 18: 584–589.Google Scholar
  207. Rapp, G. 1975. “Studies on the biosynthesis of fermentation amyl alcohol.” Proc. 4th Intl. Oenol. Symp., Valencia, Spain, pp. 394–411.Google Scholar
  208. Reazin, G., H. Scales, and A. Andreasen. 1973. Production of higher alcohols from threonine and isoleucine in alcoholic fermentation of different types of grain mash. J. Agric. Food Chem. 21: 50–54.Google Scholar
  209. Reed, G., and T. W. Nagodawithana. 1988. “Technology of yeast usage in winemaking.” Am. J. Enol. Vitic. 39: 83–90.Google Scholar
  210. Reed, G., and T. W. Nagodawithana. 1991. Yeast Technology, 2nd ed. New York: Van Nostrand Reinhold.Google Scholar
  211. Reichert, U., and M. Foret. 1977. “Energy coupling in hypoxanthine transport of yeast.” FEBS Letts. 83: 325–328.CrossRefGoogle Scholar
  212. Ribéreau-Gayon, J., E. Peynaud, and M. Lapon. 1954. “Growth factors and secondary products of alcoholic fermentation.” Comp. Rend. 239: 1549–1951.Google Scholar
  213. Ribéreau-Gayon, J., E. Peynaud, and M. Lapon. 1956a. “Investigations on the origin of secondary products of alcoholic fermentation, Part I.” Am. J. Enol. 7: 53–61.Google Scholar
  214. Ribéreau-Gayon, J., E. Peynaud, and M. Lapon. 1956b. “Investigations on the origin of secondary products of alcoholic fermentation, Part II.” Am. J. Enol. 7: 112–118.Google Scholar
  215. Rieger, M., O. Kapelli, and A. Fiechter. 1983. “The role of limited respiration in the incomplete oxidation of glucose by Saccharomyces cerevisiae.” J. Gen. Microbiol 129: 653–661.Google Scholar
  216. Roon, R. J., H. L. Even, P. Dunlop, and F. Lari-More. 1975a. “Methylamine and ammonia transport in Saccharomyces cerevisiae.” J. Bacteriol. 122: 502–509.Google Scholar
  217. Roon, R. J., F. Larimore, and J. S. Levy. 1975b. “Inhibition of amino acid transport by ammonium ion in Saccharomyces cerevisiae.” J. Bacteriol. 124: 325–331.Google Scholar
  218. Roon, R. J., J. S. Levy, and F. Larimore. 1977a. “Negative interactions between amino acid and methyl amine/ammonia transport systems of Saccharomyces cerevisiae.” J. Biol. Chem. 252: 3599–3604.Google Scholar
  219. Roon, R. J., G. M. Meyer, and F. S. Larimore. 1977b. “Evidence for a common component in kinetically distinct transport systems of Saccharomyces cerevisiae.” Molec. Gen. Genetics 158: 185–191.CrossRefGoogle Scholar
  220. Rosa, M. F., and I. Sa-Correla. 1991. “In vivo activation by ethanol of plasma membrane ATPase of Saccharomyces cerevisiae.” App. Envir. Microbiol. 57: 830: 835.Google Scholar
  221. Rose, A. H., M. J. Beavan, and C. Charpentier. 1982. “Physiological basis for enhanced ethanol production by Saccharomyces cerevisiae.” In, Over-production of Microbial Products, FEMS Symp. No. 13, V. Krumphanzyl, B. Sikyta, and Z. Vanek. Eds., pp. 211. 219. New York: Academic Press.Google Scholar
  222. Rosi, J., and M. Bertuccioll 1984. “Effect of lipids on yeast growth and metabolism under simulated vinification conditions.” 1984 Technical Abstracts, p. 20, Annual Meeting, American Societe for Enology and Viticulture, June 21–23 1984, San Diego, California.Google Scholar
  223. Rous, C. V., R. Snow, and R. E. Kunkee. 1983. “Reduction of higher alcohols by fermentation with a leucine-auxotrophic mutant of wine yeast.” J. Inst. Brew. 89: 274–278.Google Scholar
  224. Sn-Correia, I., and N. Van Uden. 1986. “Ethanol-induced death of Saccharomyces cerevisiae at low and intermediate growth temperatures.” Biotech. Bioeng. 28: 301: 303.Google Scholar
  225. Salmon, J. M. 1989. “Effect of sugar transport inactivation in Saccharomyces cerevisiae on sluggish and stuck enological fermentations.” App. Environ. Micro. 55: 9535–9538.Google Scholar
  226. Schanderl, H. 1959. Mikrobiologie des Mostes und Weines. Stuttgart, Germany, Ulmer.Google Scholar
  227. Schmitt, H. D., M. Ciriacy, and F. K. Zimmermann. 1983. “The synthesis of yeast pyruvate decarboxylase is regulated by large variations in the messenger RNA level.” Molec. Gen. Genetics 192: 247–252.CrossRefGoogle Scholar
  228. Schütz, M., and R. E. Kunkee. 1977. “Formation of hydrogen sulfide from elemental sulfur during fermentation by wine yeast.” Am. J. Enol. Vitic. 28: 137–144.Google Scholar
  229. Sentheshanmuganathan, S. 1960a. “The mechanism of the formation of higher alcohol from amino acids by Saccharomyces cerevisiae.” Biochem. J. 74: 568–576.Google Scholar
  230. Sentheshanmuganathan, S. 1960b. “The purification and properties of the tyrosine-2-oxoglutarate transaminase of Saccharomyces cerevisiae.” Biochem. J. 77: 619–625.Google Scholar
  231. Serrano, R. 1978. “Characterization of the plasma membrane ATPase of Saccharomyces cerevisiae.” Molec. Cell. Biochem. 22: 51–63.CrossRefGoogle Scholar
  232. Sharma, S., and P. Tauro. 1986. “Control of ethanol production by yeast: Role of pyruvate decarboxylase and alcohol dehydrogenase.” Biotech. Letters 8: 735–738.CrossRefGoogle Scholar
  233. Shimazu, Y., and M. Watanabe. 1981. “Effects of yeast strains and environmental conditions on formation of organic acids in must fermentation.” J. Ferment. Tech. 59: 27–32.Google Scholar
  234. Singh, R., and R. E. Kunkee. 1977. “Multiplicity and control of alcohol dehydrogenase isoenzymes in various strains of wine yeasts.” Arch. Microbiol. 114: 255–259.CrossRefGoogle Scholar
  235. Singleton, V. L., H. A. Sieberhagen, P. De Wet, and C. J. Van Wyk. 1975. “Composition and sensory qualities of wines prepared from white grapes by fermentation with and without grape solids.” Am. J. Enol. Vitic. 26: 62–69.Google Scholar
  236. Skinner, D. Z., A. D. Budde, and S. A. Leong. 1991. “Molecular karyotype analysis of fungi.” In, More Gene Manipulations in Fungi, pp. 86–103. New York: Academic Press.CrossRefGoogle Scholar
  237. Soles, R. M., C. S. Ough, and R. E. Kunkee. 1982. “Ester concentration differences in wine fermented by various species and strains of yeasts.” Am. J. Enol. Vitic. 33: 94–98.Google Scholar
  238. Stewart, G., A. Furst, and N. Avdalovic. 1988. “Transverse alternating field electrophoresis (TAFE).” Biotech. 6: 68–73.Google Scholar
  239. Stratford, M., and A. H. Rose. 1985. “Hydrogen sulphide production from sulphite by Saccharomyces cerevisiae.” J. Gen. Micro. 131: 1427–1424.Google Scholar
  240. Stratford, M., and A. H. Rose. 1986. “Transport of sulphur dioxide by Saccharomyces cerevisiae.” J. Gen. Micro. 132: 1–6.Google Scholar
  241. Sumrada, R., and T. G. Cooper. 1982. “Urea carboxylase and allophanate hydrolase are components of multifunctional protein in yeast.” J. Biol. Chem. 257: 9119–9127.Google Scholar
  242. Sun, G. Y., and A. Y. Sun. 1985. “Ethanol and membrane lipids.” Alcohol. Clin. Exp. Res. 9: 164–180.CrossRefGoogle Scholar
  243. Suomalainen, H., and A. J. A. Keranen. 1967. “Keto acids formed by baker’s yeast.” J. Inst. Brewing 73: 477–484.Google Scholar
  244. Tabor, H., C. W. Tabor, and M. S.Cohn. 1983. “Mass screening for mutants in the polyamine biosynthetic pathway in Saccharomyces cerevisiae.” Meth. Enzymol. 94: 104–108.CrossRefGoogle Scholar
  245. Thomas, C. S., R. B. Boulton, M. W. Silacci, and W. D. GubleR. 1993a. “The effect of elemental sulfur, yeast strain and fermentation medium on hydrogen sulfide production during fermentation.” Am. J. Enol. Vitic. 44: 211–216.Google Scholar
  246. Thomas, C. S., W. D. Gubler, M. W. Silacci, and R. Miller. 1993b. “Changes in elemental sulfur residues on Pinot noir and Cabernet Sauvignon berries during the growing season.” Am. J. Enol. Vitic. 44: 205–210.Google Scholar
  247. Thomas, D., R. Barbey, D. Henry, and Y. Sardin-Kerjan. 1992. “Physiological analysis of mutants of Saccharomyces cerevisiae impaired in sulphate assimilation.” J. Gen. Micro. 138: 2021–2028.Google Scholar
  248. Thomas D. S., and A. H. Rose. 1979. “Inhibitory effect of ethanol on growth and solute accumulation by Saccharomyces cerevisiae as affected by plasma-membrane lipid compositions.” Arch. Microbiol. 122: 49–55.CrossRefGoogle Scholar
  249. Thorne, R. S. W. 1958. “Statistical survey of the fermentation efficiencies of a large number of strains of brewery yeasts and a consideration of the utility of these efficiencies in classification.” J. Inst. Brew. 64: 411–421.Google Scholar
  250. Thoukis, G. 1958. “The mechanism of isoamyl alcohol formation using tracer techniques.” Am. J. Enol. 9: 161–167.Google Scholar
  251. Tokuyama, T., H. Kuraishi, K. Aida, and T. Uemura. 1973. “Hydrogen sulfide evolution due to pantothenic acid deficiency in yeast requiring this vitamin, with special reference to the effect of adenosine triphosphate on yeast cysteine desulfhydrase.” J. Gen. Appl. Microbiol. 19: 439–466.CrossRefGoogle Scholar
  252. Tomenchok, D. M., and M. C. Brandriss. 1987. “Gene-enzyme relationships in the proline biosynthetic pathway of Saccharomyces cerevisiae.” J. Bacteriol. 169: 5364–5372.Google Scholar
  253. Traverso-Rueda, S., and R. E. Kunkee. 1982. “The role of sterols on growth and fermentation on wine yeasts under vinification conditions.” Developments in Industrial Microbiology 23: 131–143.Google Scholar
  254. Tredoux, H. G., J. L. F. Kocx, P. M. Lategan, and H. B. Muller. 1987. “A rapid identification technique to differentiate between Saccharomyces cerevisiae strains and other yeast species in the wine industry.” Am. J. Enol. Vitic. 38: 161–164.Google Scholar
  255. Umbarger, H. E. 1978. “Amino acid biosynthesis and its regulation.” Ann. Rev. Biochem 47: 533–606.CrossRefGoogle Scholar
  256. Usseglio-Tomasset, L. 1975. “Volatiles of wine dependant on yeast metabolism.” Proc. 4th Intl. Oenol. Symp. Valencia, Spain, p. 346–370.Google Scholar
  257. Vahl, J. M. 1979. “A relative density-extract-alcohol nomograph for table wines.” Am. J. Enol. Vitic. 30: 262–263.Google Scholar
  258. Vallejo, C. G., and R. Serrano. 1989. “Physiology of mutants with reduced expression of plasma membrane H + -ATPase.” Yeast 5: 307–319.CrossRefGoogle Scholar
  259. Van Uden, N. 1971. “Kinetics and energetics of yeast growth.” In: The Yeasts, Vol.lI, A. H. Rose and J. S. Harrison, Eds., New York, Academic Press.Google Scholar
  260. Van Uden, N. 1989. Alcohol Toxicity in Yeast and Bacteria. Boca Raton, FL: CRC Press.Google Scholar
  261. Van Uden, N., and H. Da Cruz Duarte. 1981. “Effects of ethanol on the temperature profile of Saccharomyces cerevisiae.” Zeit. Allg. Mikrobiol. 21: 743–750.CrossRefGoogle Scholar
  262. Van Urk, H., P. R. Mak, W. A. Scheffers, and J. P. Van Dijken. 1988. “Metabolic responses of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 upon transition from glucose limitation to glucose excess.” Yeast 4: 283–292.CrossRefGoogle Scholar
  263. Van Vuuren, H. J. J., and C. J. Jacobs. 1992. “Killer yeasts in the wine industry: A review.” Am. J. Enol. Vitic. 43: 119–128.Google Scholar
  264. Van Vuuren, H. J. J., and L. Van Der Meer. 1987. “Fingerprinting of yeasts by protein electrophoresis.” Am. J. Enol. Vitic. 38: 49–53.Google Scholar
  265. Vaughn-Martini, A., and C. P. Kurtzman. 1985. “Deoxyribonucleic acid relatedness among species of the genus Saccharomyces sensu stricto.” Int. J. Syst. Bacteriol. 35: 508–511.CrossRefGoogle Scholar
  266. Verduyn, C., E. Postma, W. A. Scheffers, and J. P. Van Dijken. 1990. “Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures.” J. Gen. Microbiol. 136: 359–403.Google Scholar
  267. Vezinhet, F., B. Blondin, and J-N. Hallet. 1990a. “Chromosomal DNA patterns and mitochondrial polymorphism as tools for identification of enological strains of Saccharomyces cerevisiae.” Appl. Microbiol. Biotechnol. 32: 568–571.CrossRefGoogle Scholar
  268. Vezinhet, F., D. Delteil, and M. Valade. 1990b. “Les apports du marquage génétique de souches de levures oenologiques pour le suivi des populations levuriennes en oenologie.” In Actualities OEnologiques 89, P. Ribéreau-Gayon and A. Lonvaud, Eds., pp. 233–237. Paris: Dunod.Google Scholar
  269. Vos, P. J. A., and R. S. Gray. 1979. “The origin and control of hydrogen sulfide during fermentation of grape must.” Am. J. Enol. Vitic. 30: 187–197.Google Scholar
  270. Vos, P. J. A., W. Zeeman, and H. Heymann. 1978. “The effect on wine quality of diammonium phosphate additions to musts.” Proc. S. Afric. Soc. Enol. Vitic. Stellenbosch, South Africa:87–104.Google Scholar
  271. Wainwright, T. 1970. “Hydrogen sulfide production by yeast under conditions of methionine, pantothenate or vitamin B6 deficiency.” J. Gen. Microbiol. 61: 107–119.Google Scholar
  272. Wainwright, T. 1971. “Production of H2S by wine yeast: Role of nutrients.” J. Appl. Bacterial. 34: 161–171.CrossRefGoogle Scholar
  273. Watson, T. G. 1976. “Amino-acid pool composition of Saccharomyces cerevisiae as a function of growth rate and amino acid nitrogen source.” J. Gen. Microbiol. 96: 263–268.Google Scholar
  274. Webb, A. D., and J. L. Ingraham. 1963. “Fusel oil.” Adv. App. Microbiol. 5: 317–353.CrossRefGoogle Scholar
  275. Wenzel, K., and H. H. Dittrich. 1978. “Zur Beeinflussung der Schwefelwasserstoff-bildung der Hefe durch Trüb, Stickstoffgehalt, molecularen Schwefel und Kupfer bei der Vergarung von Traubenmost.” Wein-Wissen. 33: 200–214.Google Scholar
  276. Whiting, G. C. 1976. “Organic acid metabolism of yeasts during fermentation of alcoholic beverages: A review.” J. Inst. Brewing 82: 84–92.Google Scholar
  277. Whitney, P. A., and T. G. Cooper. 1972. “Urea carboxylase and allophanate hydrolase: Two components of adenosine triphosphate: Urea amido-lyase in Saccharomyces cerevisiae.” J. Biol. Chem. 247: 1349–1353.Google Scholar
  278. Wills, C. 1990. “Regulation of sugar and ethanol metabolism in Saccharomyces.” Crit. Rev. Biochem. Molec. Biol. 25: 245–280.CrossRefGoogle Scholar
  279. Winger, C. M. 1982. “Effect of fermentation temperature and yeast strain on residual compounds in wine.” MS thesis, Davis, CA: University of California.Google Scholar
  280. Woodward, J. R., and V. P. Cirillo. 1977. “Amino acid transport and metabolism in nitrogen-starved cells of Saccharomyces cerevisiae.” J. Bacteriol. 130: 714–723.Google Scholar
  281. Young, T. W. 1987. “Killer yeasts.” In The Yeasts, Vol. 2, 2nd ed., A. H. Rose and J. S. Harrison, Eds., New York: Academic Press.Google Scholar
  282. Yunome, H., Y. Zenibayashi, and M. Date. 1981. “Characteristic components of botrytised winesugar, alcohols, organic acids and other factors.” Hakkokogaku 59: 169–175.Google Scholar
  283. Zambonelli, C., M. G. Soli, and D. Guerra. 1984. “A study of H2S non-producing strains of wine yeasts.” Arch. Microbiol. 34: 7–15.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Roger B. Boulton
    • 1
  • Vernon L. Singleton
    • 1
  • Linda F. Bisson
    • 1
  • Ralph E. Kunkee
    • 1
  1. 1.University of CaliforniaDavisUSA

Personalised recommendations