Preparation of Musts and Juice

  • Roger B. Boulton
  • Vernon L. Singleton
  • Linda F. Bisson
  • Ralph E. Kunkee


The natural variation in almost every aspect of grape composition is a major feature of wines and is the cause of the seasonal, varietal, and regional differences that they display. The application of scientific understanding to the production of the best possible wines requires that we take steps to protect the most desirable components of the juice, sometimes by intervening with natural reactions and sometimes to overcome natural deficiencies or imbalances that exist by nutrient additions and physical treatments.


Sulfur Dioxide Titratable Acidity White Wine Screw Press Press Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agenbach, W. A. 1977. “A study of must nitrogen content in relation to incomplete fermentation, yeast production and fermentation activity.” Proc. S. Afr. Soc. Enol. Vitic. 66–87.Google Scholar
  2. Amano, Y., and M. Kagami. 1977. “Winemaking from foreign-made concentrated grape must.” Hakkokogaku Kaishi 55: 330–336.Google Scholar
  3. Amano, Y., M. Kubota, and M. Kagami. 1979. “Oxygen uptake of Koshu grape must and its control.” Hokkokogaku Kaishi 57: 92–101.Google Scholar
  4. Amerine, M. A. and M. A. Joslyn. 1951. Table Wines. The Technology of Their Production in California. Berkeley, CA: University of California Press.Google Scholar
  5. Andreasen, A. A. and T. J. B. Strier. 1953. “Anaerobic nutrition of Saccharomyces Cerevisiae. 1. Ergosterol requirement for growth in a defined medium.” J. Cell. Comp. Physiol. 41: 23–36.CrossRefGoogle Scholar
  6. Andreasen, A. A. and T. J. B. Strier. 1954. “Anaerobic nutrition of Saccharomyces Cerevisiae. 2. Unsaturated fatty acid requirement for growth in a defined medium.” J. Cell. Comp. Physiol. 42: 271–281.CrossRefGoogle Scholar
  7. Archer, T. E., and J. G. B. Castor. 1956. “Phosphate changes in fermenting must in relation to yeast growth and ethanol production.” Am. J. Enol. 7: 45–52.Google Scholar
  8. Aryan, A. P., B. Wilson, C. R. Strauss, and P. J. Williams. 1987. “The properties of glycosidases of Vitis vinifera and a comparison of their betaglucosidase activity with that of exogenous enzymes. An assessment of possible application in enology.” Am. J. Enol. Vitic. 38: 182–188.Google Scholar
  9. Augustyn, O. P. H., A. Rapp, and C. J. S. Van Wyk. 1982. “Some volatile aroma components of Vitis vinifera L. cv. Sauvignon blanc.” S. Afr. J. Enol. Vitic. 3: 53–60.Google Scholar
  10. Austerweil, G. V. 1954. “Einige anwendungsverfahren von ionaustauschern in der oenologie.” Weinburg und Keller 1: 195–198.Google Scholar
  11. Austerweil, G. V. 1955. “Ion exchange and its applications.” Soc. Chem. Ind. 141–145.Google Scholar
  12. Bayonove, C., R. A. Cordonnier and P. Dubois. 1975. “Etude d’une fraction caracteristique de l’aroma du raisin de la variete Cabernet Sauvignon; mise en evidence de la 2-methoxy-3-isobutylpyrazine.” C. R. Acad. Sci. Paris Ser. D 281: 75–78.Google Scholar
  13. Beech, F. W., L. F. Burroughs, C. F. Timberlake, and G. C. Whiting. 1979. “Progres recent sur l’aspect chimique et l’action antimicrobienne de l’anhydride sulfureux (S02).” Bull. O.I.V. 586: 1001–1022.Google Scholar
  14. Bellville, M.-P., J.-M. Brillouet, B. Tarodo De La Fuente, L. Saulinier and M. Moutounet. 1991. “Differential roles of red wine colloids in the fouling of a cross-flow microfiltration alumina membrane.” Mitt. Klost. 46: 100–107.Google Scholar
  15. Berg, H. W. 1959. “The effects of several fungal pectic enzyme preparations on grape musts and wine.” Am. J. Enol. Vitic. 10: 130–134.Google Scholar
  16. Berger, J. L. 1985. “Etude de la microfiltration tangentielle sur des Beaujolais.” Rev. d Oenol. 36: 17–21.Google Scholar
  17. Besone J. and W. V. Cruess. 1941. “Observations on the use of pectic enzymes in winemaking.” Fruit Prod. J. 20: 365–367.Google Scholar
  18. Boulton, R. 1980. “A hypothesis for the presence and activity and role of potassium/hydrogen, adenosine triphosphatases in grapevines.” Am.J. Enol. Vitic. 31: 283–287.Google Scholar
  19. Boulton, R. 1984. “Acidity modification and stabilization,” Proc. 1st Intl. Symp. Cool Climate Vitic. Enol., pp. 482–495. Corvallis, OR.Google Scholar
  20. Boulton, R. and G. Green. 1977. “Field testing of the Wemco juice clarifier.” Proc. Wine Ind. Tech. Sem. Monterey, CA.Google Scholar
  21. Cheynier, V., J. Rigaud, J. M. Souquet, F. Duprat, and M. Moutounet. 1990. “Must browning in relation to the behavior of phenolic compounds during oxidation.” Am.J. Enol. Vitic. 41: 346–349.Google Scholar
  22. Cheynier, V. F., E. K. Trousdale, V. L. Singleton, M. Salgues, and R. Wylde. 1986. “Characterization of 2-S-glutathionylcaftaric acid and its hydrolysis in relation to grape wines.” J. Agric. Food. Chem. 34: 217–221.CrossRefGoogle Scholar
  23. Davenport, M. 1985. The effects of vitamins and growth factors on growth and fermentation rates of three active dry wine yeast strains. M.S. thesis, Davis, CA: University of California.Google Scholar
  24. Davin, A., and A. Sahraoui. 1993. “Debourbage rapide des mouts de raisin par flottation a l’aide de bulles generees au sein du liquide par depressurisation.” Rev. Fr. Oenol. 140: 53–64.Google Scholar
  25. Demeaux, M., and P. Bidan. 1967. “Etude de l’inactivation par la chaleurde la polyphenoloxydase du jus de raisin.” Technol. Agric. 16: 75–79.Google Scholar
  26. Descout, J. L. 1989. “Utilisation des metaux frittes dans la filtration des vins.” Rev. d Oenol. 51: 11–17.Google Scholar
  27. Dittrich, H. H. and W.-R. Sponholz. 1975. “Die aminosaureabnahme in Botrytis-infizierten Traubenbeeren und die Bilund hoherer Alkohole in deisen Mosten bei ihrer Vergarung.” Wein-Wissen. 30: 188–210.Google Scholar
  28. Dubernet, M. and P. Ribéreau-Gayon. 1973. “Presence et significance dans les mouts et les vins de la tyrosinase du raisin.” Conn. Vigne Vin 7: 283–302.Google Scholar
  29. Dubernet, M., P. Ribéreau-Gayon, H. R. Lerner, E. Harel, and A. M. Mayer. 1977. “Purification and properties of lactase from Botrytis cinerea.” Phytochem. 16: 191–193.CrossRefGoogle Scholar
  30. Dubourdieu, D., J. C. Villettaz, C. Despianques, and P. Ribéreau-Gayon. 1981. “Degradation enzymatique du glucane de Botrytis cinerea.” Conn. Vigne Vin 15: 161–177.Google Scholar
  31. Ferrarini, R., R. Zironi, E. Celotti and S. Butatti. 1992. “Premiers resultats de l’application de la flottation dans la clarification des mouts de raisin.” Rev. Fr. Oenol. 138: 29–42.Google Scholar
  32. Gaillard, M. 1989. “Essais de microfiltration tangentielle de vins avec le filtre Memcor.” Rev.d Oenol. 51: 65–68.Google Scholar
  33. Hennig, K. 1955. “Behandlung ser Weine mit Kationen-und Anionen-Austauschern.” Dent. Weinbau 5: 126–128.Google Scholar
  34. Hemmann, H., A. C. Noble and R. B. Boulton. 1986. “Analysis of methoxypyrazines in wines: 1. Development of a quantitative procedure.” J. Agric. Food Chem. 34: 269–271.Google Scholar
  35. Hickenbotham, A. R., and J. L. Willia.Ms. 1940. “The application of enzymatic clarification to winemaking.” J. Agric. South Australia. 43:491–495; 596–602.Google Scholar
  36. Hooper, R. L., G. G. Collins, and B. C. Rankine. 1985. “Catecholase activity in Australian white grape varieties.” Am. J. Enol. Vitic. 36: 203–206.Google Scholar
  37. Houtman, A. C., and C. S. Du Plessis. 1981. “The effect of juice clarity and several conditions promoting yeast growth or fermentation rate, the production of aroma components and wine quality.” S. Afr.J. Enol. Vitic. 2: 71–81.Google Scholar
  38. Huang, Z., and C. S. Ough. 1989. “Effect of vineyard locations, varieties and rootstocks on the juice amino acid content of several cultivars.” Am. J. Enol. Vitic. 40: 135–139.Google Scholar
  39. Ingledew, W. M., and R. E. Kunkee. 1985. “Factors influencing sluggish fermentations of grape juice.” Am. J. Enol. Vitic. 36:65–76.Google Scholar
  40. Jankov, S. I. 1962. “Hitze-inaktivierung der Polyphenoloxydasen in einigen Fruchtsaften.” FruchtsaftJnd. Confructa 7: 13–32.Google Scholar
  41. Kielhöfer, E., and G. Würdig. 1960. “Die an unbekannte Weinbestandteile gebund ene Schweflige Saure (rest SO2) und ihre Bedeutung fur den Wein.” Weinberg und Keller 7: 313–328.Google Scholar
  42. Kielhöeer, E., and G. Würdig. 1963. “Die Entsauerung sehr sauer Traubenmoste durch Ausfallung der Weinsaure und Apfelsaure als Kalkdoppelsalz.” Dent. Wein-Ztg. 99: 1022, 1024, 1026, 1028.Google Scholar
  43. Lacy, M. J., M. S. Allen, R. L. N. Harris, and W. V. Brown. 1991. “Methoxypyrazines in Sauvignon blanc grapes and wines.” Am. J. Enol. Vitic. 42: 103–108.Google Scholar
  44. Lemperle, E. 1978. “Untersuchungen zur Qualitatsbeeinflussung der Moste durch unterschiedliche Traubenpressen.” Die Weinwirt. 31: 861–870.Google Scholar
  45. Lie, S. 1972. “Die EBC-Ninhydrin-Methode zur Bestimmung des freien alpha-aminostickstoffs: Mitteilung im auftrag des EBC-Analysesnkomitees.” Brauwissen. 25: 250–253.Google Scholar
  46. Ludema.N.N, A. 1987. “Wine clarification with a cross-flow microfiltration system.” Am. J. Enol. Vitic. 38:228–235.Google Scholar
  47. Mandl, B., F. Wullinger, D. Wagner, and A. Piendl. 1971. “Zur einfachen Bestimmung des alphaAminostickstoffs von Malz, Wurze und Bier mittels der TNBS Methode.” Brauwissen. 24: 227–230.Google Scholar
  48. Marais, J. 1987. “Terpene concentrations and wine quality of Vitis vinifera L. cv. Gewürztraminer as affected by grape maturity and cellar practices.” Vitis 26: 231–245.Google Scholar
  49. Maurer, R. 1978. “Neue Gesichtspunkte bei der Weinklarung durch Sedimentation. Schonung und Separierung.” Deut. Weinbau 33 (13): 496–502.Google Scholar
  50. Maurer, R., and F. Meidinger. 1976. “Einfluss von Schnecken-and Tankpressen auf die Mostzusammensetzung.” Deut. Weinbau 31 (11): 372–377.Google Scholar
  51. Mcwilliam, D. J., and C. S. Ough. 1974. “Measurement of ammonia in musts and wines using a selective electrode.” Am.J. Enol. Vitic. 25: 67–72.Google Scholar
  52. Meidinger, F. 1978. “Die Entwicklung der Pressemtechnik bis zur pneumatischen Grossraumpresse mit Ergebnissen und Auswertungen vom Herbst 1977.” Deut. Weinbau 33 (27): 1228–1232.Google Scholar
  53. Monk, P. R. 1986. “Formation, utilization and excretion of hydrogen sulphide by wine yeast.” Aust. N.Z. Wine Ind. J. 1(3):10–16.Google Scholar
  54. Munyon, J. R., and C. W. Nagel. 1977. “Comparison of methods of deacidification of musts and wines.” Am. J. Enol. Vitic. 28: 79–87.Google Scholar
  55. Munz, T.H. 1960. “Die Bindung des Ca-Doppelsalzes der Wein-und Apfelsaure, die Moglichkeiten seiner Fallung durch CaCO3 im Most.” Weinberg und Keller. 7: 239–247.Google Scholar
  56. Munz, TH. 1961. “Methoden zur prakischen Falung der Wein-und Apfelsaure als Ca-Doppelsalzes.” Weinberg und Keller. 8: 155–158.Google Scholar
  57. Murtaugh, M. 1990. Calcium salt precipitation of malate and tartrate from model solutions, wines and juices. M.S. thesis, CA: University of California Davis.Google Scholar
  58. Nagel, C. W., T. L. Johnson, and G. H. Carter. 1975. “Investigation of the methods of adjusting the acidity of wines.” Am.J. Enol. Vitic. 26: 12–17.Google Scholar
  59. Ouch, C. S., and H. W. Berg. 1974. “The effect of two commercial pectic enzymes on grape musts and wines.” Am. J. Enol. Vitic. 25: 208–211.Google Scholar
  60. Ough, C. S. and E. A. Crowell. 1979. “Pectic enzyme treatment of white grapes: Temperature, variety and skin contact factors.” Am. J. Enol. Vitic. 30: 22–27.Google Scholar
  61. Ough, C. S., M. Davenport, and K Joseph. 1989. “Effects of certain vitamins on growth and fermentation rate of active dry wine yeasts.” Am.J. Enol. Vitic. 40: 208–213.Google Scholar
  62. Park, S. K, J. C. Morrison, D. O. Adams, and A. C. Noble. 1991. “Distribution of free and glycosidically bound monoterpenes in the skin and mesocarp of Muscat of Alexandria grapes during development.” J. Agric. Food Chem. 39: 514–518.CrossRefGoogle Scholar
  63. Peri, C. 1987. “Les techniques de filtration tangentielle des mouts et des vins.” Bull. O.I.V. 60: 789–800.Google Scholar
  64. Peri, C., M. Riva, and P. Decio. 1988. “Cross-flow membrane filtration of wines: Comparison of performance of ultrafiltration, microfiltration and intermediate cut-off membranes.” Am. J. Enol. Vitic. 39: 162–168.Google Scholar
  65. Perscheid, M., and F. Zurn. 1977. “Der einfluss von Oxydationsvorgangen auf die Weinqualität.” Weinwirt. 113: 10–12.Google Scholar
  66. Peterson, R. G., and A. Caputi, Jr. 1967. “The browning problem in wines. II. Ion exchange effects.” Am. J. Enol. Vitic. 18: 105–112.Google Scholar
  67. Peterson, R. G., and G. R. Fuju. 1969. “Two stage sequential ion exchange treatment.” U.S. Patent 3,437, 491.Google Scholar
  68. Ramey, D. D., A. Bertrand, C. S. Ough, V. L. Singleton, and E. Sanders. 1986. “Effects of skin contact temperature on Chardonnay must and wine composition.” Am. J. Enol. Vitic. 37: 99–106.Google Scholar
  69. Rankine, B. C., K E. Pocock, W. D. Hardy, J. C. Kilgour, A. W. Hoey, and C. Weeks. 1977. “Acidification of wine by ion exchange.” Aust. Wine Brew. Spirit Rev. 96 (10): 42–46Google Scholar
  70. Ray, M. A. 1991. “The use of grape derived concentrate and aroma in winemaking.” Aust. N. Z. Wine Ind. J. 6: 272–274.Google Scholar
  71. Ribéreau-Gayon, P. 1985. “New developments in wine microbiology.” Am.J. Enol. Vitic. 36: 1–10.Google Scholar
  72. Ribéreau-Gayon, J., E. Peynaud, and M. Lafon. 1954. “Growth factors and secondary products of alcoholic fermentation.” Comp. Rend. 239: 1549–1951.Google Scholar
  73. Rice, A. 1974. “Chemistry of winemaking from native American grapes varieties.” In: The Chemistry of Winemaking. Am. Chem. Soc. Symposium Series. No. 137. Chapter 4, A. D. Webb, Ed., 88–116. Washington, DC: Am. Chem. Soc.Google Scholar
  74. Robertson, G. L. 1987. “The fractional extraction and quantitative determination of pectic substances in grapes and musts.” Am. J. Enol. Vitic. 30: 182–186.Google Scholar
  75. Sayavedra, L. A., and M. W. Montgomery. 1986. “Inhibition of polyphenoloxidase by sulfite.” J. Food. Sci. 51: 1531–1536.CrossRefGoogle Scholar
  76. Schanderl. H. 1959. Die Mikrobiologie des Mostes und Weines, Stuttgart, Germany; Eugen Ulmer.Google Scholar
  77. Singleton, V. L. 1987. “Oxygen with phenols and related reactions in musts, wines and model systems: Observations and practical implications.” Am. J. Enol. Vitic. 38: 69–77.Google Scholar
  78. Singleton, V. L., H. A. Sieberhagen, P. De Wet, and C. J. Van Wyk. 1975. “Composition and sensory qualities of wines prepared from white grapes by fermentation with and without grape solids.” Am. J. Enol. Vitic. 26: 62–69.Google Scholar
  79. Singleton, V. L., J. Zaya, E. Trousdale and M. Salgues. 1984. “Caftaric acid in grapes and conversion to a reaction product during processing.” Vitis 23: 113–120.Google Scholar
  80. Steele, J. T., and R. E. Kunkee. 1978. “Deacidification of musts from the western United States by the calcium double-salt precipitation process.” Am. J. Enol. Vitic. 29: 153–160.Google Scholar
  81. Steele, J. T., and R. E. Kunkee. 1979. “Deacidification of high acid California wines by calcium double-salt precipitation.” Am. J. Enol. Vitic. 30: 227–231.Google Scholar
  82. Tercelj, D. 1965. “Etude des composes azotes du vin.” Ann. Technol. Agric. 14: 307–319.Google Scholar
  83. Thompson, D. 1991. “The application of osmotic distillation for the wine industry.” Aust. Grape-grower Winemaker. 328: 11, 13–14.Google Scholar
  84. Traverso-Rueda, S., and V. L. Singleton. 1973. “Catecholase activity in grape juice and its implications in winemaking.” Am. J. Enol. Vitic. 24: 103–109.Google Scholar
  85. Troost, G. 1980. Technologie des Weines, 5th ed. Stuttgart Germany: Ulmer.Google Scholar
  86. Van Wyk, C.T 1978. “The influence of juice clarification on composition and quality of wines,” Proc. 5th Intl. Oenol. Symp., pp. 33–45. Auckland, New Zealand.Google Scholar
  87. Villettaz, J.C., D. Steiner, and H. Trogus. 1984. “The use of a beta-glucanase as an enzyme in wine clarification and filtration.” Am. J. Enol. Vitic. 35: 253–256.Google Scholar
  88. Welk, B. 1992. “Schubkolbenpresse contra Tankpresse.” Weinwirt. Technik. 7: 16–19.Google Scholar
  89. White, B. B. and C. S. Ough. 1973. “Oxygen uptake studies on grape juice.” Am. J. Enol. Vitic. 24: 148–152.Google Scholar
  90. Wildenradt, H. L. and V. L. Singleton. 1974. “The production of aldehydes as a result of polyphenolic compounds and its relation to wine aging.” Am. J. Enol. Vitic. 25: 119–126.Google Scholar
  91. Williams, J. T., C. S. Ough, and H. W. Berg. 1978. “White wine composition and quality as influenced by methods of must clarification.” Am. J. Enol. Vitic. 29: 92–96.Google Scholar
  92. Williams, P. J., C. R. Strauss, and B. Wilson. 1980. “Hydroxylated linalool derivatives as precursors of volatile monoterpenes of Muscat grapes.” J. Agric. Food Chem. 28: 766–771.CrossRefGoogle Scholar
  93. Wilson, B., C. R. Strauss, and P. J. Williams. 1986. “The distribution of free and glycosidicallybound monoterpenes among skin, juice and pulp fractions of some white grape varieties.” Am. J. Enol. Vitic. 37: 107–111.Google Scholar
  94. Wucherpfennig, K. and H. Dietrich. 1982. “Verbesserung der Filtrierfahigkeit von Weinen durch enzymatischen abbau von kohlenhydrathaltigen Kolloiden.” Weinwirt. 23: 598–603.Google Scholar
  95. Wucherpfennig, K. and H. Dietrich. 1989. “Die Bedeutung der Kolloide fur die Klarung von Most und Wein.” Mitt. Kloster. 44: 1–12.Google Scholar
  96. Würdig, G. 1988. “Doppelsalzent sauerung Hinweise zur Anwendung.” Weinwirt. Technik 124(2):6–11.Google Scholar
  97. Zepponi, G. and T. Cottrell. 1975. “White juice separation system.” Am. J. Enol. Vitic. 26: 154–157.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Roger B. Boulton
    • 1
  • Vernon L. Singleton
    • 1
  • Linda F. Bisson
    • 1
  • Ralph E. Kunkee
    • 1
  1. 1.University of CaliforniaDavisUSA

Personalised recommendations