Skip to main content

The Relationship Between Nutritional Factors and Age-Related Macular Degeneration

  • Chapter
Preventive Nutrition

Part of the book series: Nutrition ◊ and ◊ Health ((NH))

Abstract

Age-related macular degeneration (AMD) is the primary cause of incurable blindness in the United States (1). Among people aged 65 yr and older, approx 25% have signs of age-related maculopathy, including large or confluent drusen, retinal pigmentary changes, geographic atrophy, and exudative disease (2). About 7% of persons 75 yr of age or older have advanced AMD with visual loss (2). We expect to see 1.9 million cases of advanced AMD with visual loss in this age group by the year 2025 (2,3). It is also estimated that 25.7 million people age 45 and older will have signs of either early or late AMD in the year 2025; 23.1 million with signs of early AMD, and 2.6 million with late AMD (2,3). Given the large public health impact of this disease, research focused on causes of this disease is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. National Advisory Eye Council Report of the Retinal and Choroidal Diseases Panel: Vision Research: A National Plan: 1983–1987. Washington DC: US Dept of Health and Human Services, 1984.

    Google Scholar 

  2. Klein R, Klein B, Linton KLP. Prevalence of age-related maculopathy: the Beaver Dam Study. Ophthalmology 1992; 99:933–943.

    CAS  Google Scholar 

  3. U.S. Departmentof Commerce. StatisticalAbstract of the United States 1995. September, 1995, US Bureau of the Census, Current Population Reports, pp. 25–1104.

    Google Scholar 

  4. Macular Photocoagulation Study Group. Argon laser photocoagulation for neovascular maculopathy. Arch Ophthalmol 1986; 104:694–701.

    Article  Google Scholar 

  5. Macular Photocoagulation Study Group. Persistent and recurrent neovascularization after krypton laser photocoagulation for neovascular lesions of age-related macular degeneration. Arch Ophthalmol 1990; 108:825–831.

    Article  Google Scholar 

  6. Macular Photocoagulation Study Group. Krypton laser photocoagulation for neovascular lesions of age-related macular degeneration. Arch Ophthalmol 1990; 108:816–824.

    Article  Google Scholar 

  7. Seddon JM, Hennekens CH. Vitamins, minerals, and macular degeneration: promising but unproven hypotheses. Arch Ophthalmol 1994; 112(2):176–179.

    Article  CAS  Google Scholar 

  8. Frei B. Reactive oxygen species and antioxidant vitamins: mechanisms of action. Am J Med 1994; 97(3A):5S–14S.

    Article  Google Scholar 

  9. Young RW. Solar radiation and age-related macular degeneration. Surv Ophthalmol 1988; 32:252–269.

    Article  CAS  Google Scholar 

  10. Hayes KC. Retinal degeneration in monkeys induced by deficiencies of vitamin E orA. Invest Ophthalmol 1974; 13:499–510.

    CAS  Google Scholar 

  11. Anderson RE, Rapp LM, Wiegand RD. Lipid peroxidation and retinal degeneration. Curr Eye Res 1984; 3(1):181–191.

    Article  Google Scholar 

  12. Gottsch JD, Bynoe LA, Harlan JB, Rencs EV, Green WR. Light-induced deposits in Bruch’s membrane of protoporphyric mice. Arch Ophthalmol 1993; 111:126–129.

    Article  CAS  Google Scholar 

  13. Eckhert CD, Hsu MH, Pang N. Photoreceptor damage following exposure to excess riboflavin. Experimentia 1993; 49:1084–1087.

    Article  CAS  Google Scholar 

  14. Foote CS. Detection and characterization of Singlet Oxygen, in. Reactive Oxygen Species in Chemistry, Biology and Medicine, Quintanilha A, New York: Plenum, published in cooperation with NATO Scientific Affairs Division, 1988.

    Google Scholar 

  15. Murray RK, Granner DK, Mayes PA, Rodwell VW. Harper’s Biochemistry, 23rd ed. A Lange Medical Book, Norwalk, CT: Appleton and Lange, 1993.

    Google Scholar 

  16. Vanderhagen AM, Yolton DP, Kaminski MS, Yolton RL. Free radicals and antioxidant supplementation: a review of their roles in age-related macular degeneration. J Am Optom Assoc 1993; 64(12):871–878.

    CAS  Google Scholar 

  17. Young RW. Pathophysiology of age-related macular degeneration. Survey Ophthalmol 1987; 31:291–306.

    Article  CAS  Google Scholar 

  18. Willett W, Churchill. Nutritional epidemiology. In: Monographs in Epidemiology and Biostatistics. Mac Mahon, B, ed. vol 15. New York: Oxford University Press, 1990;

    Google Scholar 

  19. Katz ML, Robison Jr G. Nutritional influences on autoxidation, lipofuscin accumulation and aging. In: Free Radicals, Aging and Degenerative Diseases. Johnson J, Walford R, Armon D, Miquel J, eds. New York, Liss, 1986; 221–259.

    Google Scholar 

  20. Holz FG, Seraidah G, Pauleikhoff D, Bird AC. Analysis of lipid deposits extracted from human macular and peripheral Bruch’s membrane. Arch Ophthalmol 1994; 112:402–406.

    Article  CAS  Google Scholar 

  21. Liles MR, Newsome DA, Oliver PD. Antioxidant enzymes in the aging human retinal pigment epithelium. Arch Ophthalmol 1991; 109:1285–1288.

    Article  CAS  Google Scholar 

  22. Frei B. Ascorbic acid protects lipids in human plasma and low-denstiy lipoprotein against oxidative damage. Am J Clin Nutr 1991; 54:1113S–1118S.

    Google Scholar 

  23. International Life Sciences Foundation. Present Knowledge in Nutrition, 6th ed. Brown ML, ed. Washington, DC: International Life Sciences Institute-Nutrition Foundation, 1990; 532.

    Google Scholar 

  24. National, Research and Council. Recommended Dietary Allowances. 10th ed. Washington, DC: National Academy Press, 1989.

    Google Scholar 

  25. Roberfroid M, Calderon PB. Free Radicals and Oxidation Phenomena in Biological Systems. New York: Marcel Dekker, 1995.

    Google Scholar 

  26. Niki E, Saito T, Kawakami A, Kamiya Y. Inhibition of oxidation of methyl linoleate in solution by vitamin E and vitamin C. J Biol Chem 1984; 259:4177–4182.

    Google Scholar 

  27. Taylor A, Jacques PF, Nadler D, Morrow F, Sulsky SI, Shepard D. Relationship in humans between ascorbic acid consumption and levels of total and reduced ascorbic acid in lens, aqueous humor, and plasma. Current Eye Res 1991; 10:751–759.

    Article  Google Scholar 

  28. Linder MC. Nutritional Biochemistry and Metabolism with Clinical Applications, 2nd ed. New York: Elsevier, 1991.

    Google Scholar 

  29. Horwitt MK. Vitamin E and lipid metabolism in man. Am J Clin Nutr 1962; 8:451–461.

    Google Scholar 

  30. Horwitt MK. Status of human requirements for vitamin E. Am J Clin Nutr 1974; 27:1182–1193.

    CAS  Google Scholar 

  31. Machlin LJ, Bendich A. Free radical tissue damage: protective role of antioxidant nutrients. FASEB J 1987; 1:441–445.

    CAS  Google Scholar 

  32. Tirmenstein M, Reed DJ. Effects of glutathione on the alpha-tocopherol-dependent inhibition of nuclear lipid peroxidation. J Lipid Res 1989; 30:959–965.

    Google Scholar 

  33. Stryer L. Biochemistry, 2nd ed. New York: Freeman, 1981.

    Google Scholar 

  34. Stroub O. Key to Carotenoids, 2nd ed. Basel, Birkhauser Verlag, 1987; 1–296.

    Google Scholar 

  35. Krinsky NI. Antioxidant functions of carotenoids. Free Radical Biol Med 1989; 7:617–635.

    Article  CAS  Google Scholar 

  36. Briggs GM, Calloway DH. Nutrition and Physical Fitness, l lth ed. New York: Holt, Rinehart and Winston, 1979; 380.

    Google Scholar 

  37. Mangels AR, Holden JM, Beecher GR, Forman MR, Lanza E. Carotenoid content of fruits and vegetables: an evaluation of analytic data. J Am Diet Assoc 1993; 93:284–296.

    Article  CAS  Google Scholar 

  38. Chug-Ahuja JK, Holden JM, Forman MR, Mangels R, Beecher GR, Lanza E. The development and application of a carotenoid database for fruits, vegetables, and selected multicomponent foods. J Am Diet Assoc 1993; 93:318–323.

    Article  CAS  Google Scholar 

  39. Olson J, Allen, Krinsky NI. Introduction: the colorful, fascinating world of the carotenoids: important physiologic modulators. FASEB J 1995; 9:1547–1550.

    CAS  Google Scholar 

  40. DiMascio P, Kaiser S, Sies H. Ranking carotenoids as singlet oxygen quenchers: lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 1989; 274(2):532–538.

    Article  Google Scholar 

  41. Seddon JM, Ajani UA, Sperduto RD, Hiller R, Blair N, Burton TC, et al., Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye disease case-control study group. JAMA 1994; 292(18):1413–1420.

    Article  Google Scholar 

  42. Schalch W, ed. Carotenoids in the retina-a review of their possible role in preventing or limiting damage caused by light and oxygen. In: Free Radicals and Aging. Emerit I, and BC, eds, Basel, Switzerland: Birkhauser Verlag, 1994; 290–298.

    Google Scholar 

  43. Oliver PD, Tate DJ, Newsome DA. Metallothionein in human retinal pigment epithelial cells: expression, induction and zinc uptake. Current Eye Res 1992; 11(2):183–188.

    Article  CAS  Google Scholar 

  44. Newsome DA, Oliver PD, Deupree DM, Miceli MV, Diamond JG. Zinc uptake by primate RPE and choroid. Current Eye Res 1992; 11(3):213–217.

    Article  CAS  Google Scholar 

  45. Katz ML, Parker KR, Handelman GJ, Bramel TL, Dratz EA. Effects of antioxidant nutrient deficiency on the retina and retinal pigment epithelium of albino rats: a light an delectron microscopic study. Exp Eye Res 1982; 34:339–369.

    Article  CAS  Google Scholar 

  46. Katz ML, Robison G. Nutrition influences on autoxidation, lipofuscin accumulation, and aging. In: Modern Aging Research Johnson J Jr, Walford R, Harmon D, Miquel J, eds. New York: Liss, 1986; 221–259.

    Google Scholar 

  47. Hrboticky N, MacKinnon MJ, Innis SM. Retina fatty acid composition of piglets fed from birth with a linoleic acid-rich vegetable-oil formula for infants. Am J Clin Nutr 1991; 53:483–490.

    Google Scholar 

  48. Gülcan HG, Alvarez RA, Maude MB, Anderson RE. Lipids of human retina, retinal pigment epithelium, and Bruch’s membrane/choroid: comparison of macular and peripheral regions. Invest Ophthalmol Vis Sci 1993; 34:3187–3193.

    Google Scholar 

  49. Tripathi BJ, Tripathi RC. Cellular and subcellular events in retinopathy of oxygen toxicity with a preliminary report on the preventive role of vitamin E and gamma-aminobutyric acid: a study in vitro. Curr Eye Res 1984; 3(1):193–208.

    Article  CAS  Google Scholar 

  50. Tso MO, M, Woodford BJ, Lam KW. Distribution of ascorbate in normal primate retina and after photic injury: a biochemical, morphological study. Curr Eye Res 1984; 3:181–191.

    Article  CAS  Google Scholar 

  51. Ham WT, Mueller HA, Ruffolo JJ, Millen JE, Cleary SF, Guerry RK, et al. Basic mechanisms underlying the production of photochemical lesions in the mammalian retina. Curr Eye Res 1984; 1:165–174.

    Article  Google Scholar 

  52. Li ZY, Tso MO, M, Woodford BJ, Wang HM, Organisciak DT. Amerlioration of photic injury in rat retina by ascorbic acid. Invest Ophthalmol Vis Sci 1984; 25(Suppl):90.

    Google Scholar 

  53. Organisciak DT, Wang H, Li ZY, Tso MO, M. The protective effect of ascorbate in the retinal light damage of rats. Invest Ophthalmol Vis Sci 1985; 26:1580–1588.

    CAS  Google Scholar 

  54. Gerster H. Review: antioxidant protection of the aging macula. Age Aging 1991; 20:60–90.

    Article  CAS  Google Scholar 

  55. Hope GM, Dawson WW, Engel HM, Ulshafer RJ, Kessler MJ, Sherwood MB. A primate model for age related macular drusen. Br J Ophthalmol 1992; 76:11–16.

    Article  CAS  Google Scholar 

  56. Borges J, Li ZY, Tso MO. Effects of repeated photic exposures on the monkey macula. Arch Ophthalmol 1990; 108(5):727–733.

    Article  Google Scholar 

  57. Newsome DA, Swartz M, Leone N, Elston RD, Miller E. Oral zinc in macular degeneration. Arch Ophthalmol 1988; 106:192–198.

    Article  CAS  Google Scholar 

  58. Goldberg J, Flowerdew G, Smith E, Brody JA, Tso MO, M. Factors associated with age-related macular degeneration: an anlysis of data from the First National Health and Nutrition Examination Survey. Am J Epidemiol1988; 128:700–710.

    Google Scholar 

  59. The Eye Disease Case-Control Group. Antioxidant status and neovascular age-related macular degeneration. Arch Ophthalmol 1993; 111:104–109.

    Article  Google Scholar 

  60. The Eye Disease Case-Control Group. Risk factors for neovascular age-related macular degeneration. Arch Ophthalmol 1992; 110(12):1701–1708.

    Article  Google Scholar 

  61. West S, Vitale S, Hallfrisch J, Munoz B, Muller D, Bressler S, et al. Are antioxidants or supplements protective for age-related macular degeneration? Arch Ophthalmol 1994; 112:222–227.

    Article  Google Scholar 

  62. Verhoeff FH, Grossman HP. Pathogenesis of disciform degeneration of the macula. Arch Ophthalmol 1937; 18:561–585.

    Article  Google Scholar 

  63. Hyman L, Lilienfeld Abraham M, Ferris FL, III, Fine SL. Senile macular degeneration: a case-control study. Amer J Epidemiol 1983; 118(2):213–227.

    Google Scholar 

  64. Sanders T, AB, Haines AP, Wormald R, Wright LA, Obeid O. Essential fatty acids, plasma cholesterol, and fat-soluble vitamins in subjects with age-related maculopathy and matched control subjects. Am J Clin Nutr 1993; 57:428–433.

    CAS  Google Scholar 

  65. Klein R, Klein BE, Franke T. The relationship of cardiovascular disease and its risk factors to age-related maculopathy. The Beaver Dam Eye Study. Ophthalmology 1993; 100(3):406–414.

    CAS  Google Scholar 

  66. Klein R, Klein BE, Linton KL, DeMets DL. The Beaver Dam Eye Study: the relation of age-related maculopathy to smoking. Am J Epidemiol 1993; 137(2):190–200.

    CAS  Google Scholar 

  67. Seddon JM, Hankinson S, Speizer F, Willett WC. A prospective study of smoking and age-related macular degeneration. Am J Epidemiol 1995; SER S34 (Abstract).

    Google Scholar 

  68. Seddon JM, Ujani U, Sperduto R, Yannuzzi L, Burton T, Haller J, et al. Dietary fat intake and age-related macular degeneration. Invest Ophthalmol Vis Sci 1994; 35(4):2003.

    Google Scholar 

  69. Mares-Perlman AJ, Brady EW, Klein R, VandenLangenberg MG, Klein EB, Palta M. Dietary fat and agerelated maculopathy. Arch Ophthalmol 1995; 113:743–748.

    Article  CAS  Google Scholar 

  70. Stahl W, Sies H. Physical quenching of singlet oxygen and cis-trans isomerization of carotenoids. Ann NY Acad Sci 1993;

    Google Scholar 

  71. Liebler DC. Antioxidant reactions of carotenoids. Ann NY Acad Sci 1993; 691:20–31.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hung, S., Seddon, J.M. (1997). The Relationship Between Nutritional Factors and Age-Related Macular Degeneration. In: Bendich, A., Deckelbaum, R.J. (eds) Preventive Nutrition. Nutrition ◊ and ◊ Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-6242-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6242-6_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6244-0

  • Online ISBN: 978-1-4757-6242-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics