Effects of 5-HT and GABA agents on aggressive responding of adult men with a history of childhood conduct disorder

  • Don R. Cherek
  • Scott D. Lane


Numerous studies in nonhumans and human subjects have supported a role for serotonin (5-HT) in aggression. Reduced levels of 5-HT in cerebrospinal fluid (CSF) have been associated with increased likelihood of aggression in free-ranging monkeys1–4 and human adult males5–6 as well as children7. Decreased 5-HT activity determined by neuroendocrine challenge procedures has recorded blunted responses, i.e., diminished activity, in human subjects with a history of aggression8–10.


Medication Event Monitoring System Tryptophan Depletion Response Panel Human Aggression Childhood Conduct Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Higley, J.D., Mehlman, P.T., Higley, S.B., Femald, B., Vickers, J.. Lindell, S.G., Taub, D.M., Suomi, S.J. and Linnoila, M., 1996a, Excessive mortality in young free-ranging male nonhuman primates with low cerebrospinal fluid 5-hydroxyindleacetic acid concentrations. Arch Gen Psychiatry 53: 537–543.Google Scholar
  2. 2.
    Higley, J.D., King, S.T., Hasen, M.F., Champoux, M., Suomi, S.J. and Linnoila, M., 1996b, Stability of interindividual differences in serotonin function and its relationship to severe aggression and competent social behavior in rhesus macaque females. Neuropsychopharmacology 14: 67–76.PubMedCrossRefGoogle Scholar
  3. 3.
    Mehlman, P.T., Higley, J.D., Faucher, I., Lilly, A.A., Taub, D.M., Suomi, S. and Linnoila, M., 1994, Low CSF 5-HIAA concentrations and severe aggression and impaired impulse control in nonhuman primates. Am J Psychiatry 151: 1485–1491.PubMedGoogle Scholar
  4. 4.
    Westergaard, G.C., Suomi, Si., Higley, J.D. and Mehlman, P.T., 1999, CSF 5-HIAA and aggression in female macaque monkeys: species and interindividual differences. Psychopharmacology 146: 440–446.PubMedCrossRefGoogle Scholar
  5. 5.
    Brown,G.L., Goodwin, F.K., Ballenger, J., Goyer, P. and Major, L., 1979, Aggression in humans correlates with cerebrospinal fluid metabolites. Psychiatry Research 1: 131–139.CrossRefGoogle Scholar
  6. 6.
    Linnoila, M., Virkkunen, M., Scheinin, M., Nuutila, A., Rimon, R. and Goodwin, F.K.,1983, Low cerebrospinal fluid 5-hydroxyindloeacetic acid concentrations differentiate impulsive from non-impulsive violent behavior. Life Sci 33: 2609–2614.Google Scholar
  7. 7.
    Kruesi, M.J.P., Rapoport, J.L., Hamburger, S., Hibbs, E., Potter, W.Z., Lenane, M. and Brown, G.L.,1990, Cerebrospinal fluid monoamine metabolites, aggression and impulsivity in disruptive behavior disorders of children and adolescents. Arch Gen Psychiatry 47: 419–426.Google Scholar
  8. 8.
    Cherek, D.R., Moeller, F.G., Kahn-Dawood, F., Swann, A. and Lane, S.D., 1999, Prolactin response to buspirone was reduced in violent compared to nonviolent parolees. Psychopharmacology 142: 144–148.PubMedCrossRefGoogle Scholar
  9. 9.
    Coccaro, E.F., Siever, L.J., Klar, H.M., Maurer, G., Cochrane, K., Cooper, T.B., Mohs, R.C. and Davis, K.L., 1989, Serotonergic studies in patients with affective and personality disorders. Arch Gen Psychiatry 46: 587–599.PubMedCrossRefGoogle Scholar
  10. 10.
    Coccaro, E.F., Gabriel, S. and Siever, L.J., 1990, Buspirone challenge: preliminary evidence for a role for central 5-HT la receptor function in impulsive aggressive behavior in humans. Psychopharm Bull 26: 393–405.Google Scholar
  11. 11.
    de Boer, S.F., Lesourd, E., Mocaer, E. and Koolhaas, J.M., 1999, Selective antiaggressive effects of alnespirone in resident-intruder test are mediated via 5-hydroxytryptamine IA receptors: A comparative pharmacological study with 8-hydroxy-2-dipropylaminotetralin, ipsapirone, buspirone. eltoprazine, and WAY-100635. J Pharmacol Exp Ther 288: 1125 1133.Google Scholar
  12. 12.
    de Boer, S.F., Lesourd, M., Mocaer, E. and Koolhaas, J.M., 2000, Somatodendritic 5HT1 a autoreceptors mediate the anti-aggressive actions of 5-HT I a receptor agonists in rats: An ethopharmacological study with S-15535, alnespirone, and WAY-100635. Neuropsychopharmacology 23: 20–33.PubMedCrossRefGoogle Scholar
  13. 13.
    Fish, E.W., Faccidomo, S. and Miczek, K.A.,1999, Aggression heightened by alcohol or social instigation in mice: reduction by the 5-HT1b receptor agonist CP-94,253. Psychopharmacology 146: 391–399.Google Scholar
  14. 14.
    Olivier, B., Mos, J., Raghoebar, M., de Koning, P. and Mak, M.,1994, Serenics. In Progress in Drug Research 42: 167–308,(E. Jucker, ed.), Birkhauser verlag, Basel.Google Scholar
  15. 15.
    Olivier, B., Mos, J., van Oorschot, R. and Hen, R., 1995, Serotonin receptors and animal models of aggressive behavior. Pharmacopsychiatry 28: 80–90.PubMedCrossRefGoogle Scholar
  16. 16.
    Olivier, B., and Mos, J., 1986, Serenics and aggression. Stress Med 2: 197–209.CrossRefGoogle Scholar
  17. 17.
    Olivier, B. and Mos, J., 1992, Rodent models of aggressive behavior and serotonergic drugs. Prog Neuro-Psychopharm and Bio! Psychiat 16: 847–870.CrossRefGoogle Scholar
  18. 18.
    Olivier, B., Van Dalen,D. and Hartog, J., 1986, A new class of psychoactive drugs: serenics. Drugs Future 11: 473–494.Google Scholar
  19. 19.
    Cherek, D.R., Spiga, R. and Creson, D.L., 1995, Acute effects of eltoprazine on aggressive and point-maintained responding of normal male participants: Phase I study. Exper. Clin Psychopharm 3: 287–293.CrossRefGoogle Scholar
  20. 20.
    Moeller, F.G., Dougherty, D.M., Swann, A.C., Collins, D., Davis, C.M. and Cherek, D.R.,1996, Tryptophan depletion and aggressive responding in healthy males. Psychopharmacology 126: 97–103.Google Scholar
  21. 21.
    Bjork, J.M., Dougherty, D.M., Moeller, F.G., Cherek, D.R. and Swann, A.C.,1999, The effects of tryptophan depletion and loading on laboratory aggression in men: time course and a food restricted control. Psychopharmacology 142: 24–30.Google Scholar
  22. 22.
    Cherek, D.R. and Lane, S.D., 1999, Effects of d,l-fenfluramine on aggressive and impulsive responding in adult males with a history of conduct disorder. Psychopharmacology 146: 473–481Google Scholar
  23. 23.
    Curtis, D.R. and Johnson, G.A.R., 1974, Aminoacid transmitters in the mammalian central nervous system. Ergeb Physiol 69: 97–188.PubMedGoogle Scholar
  24. 24.
    Feldman, R.S., Meyer, J.S. and Quenzer, L.F., 1997, Principles of Neuropharmacology, Sinnauer, Assoc., Sunderland, MAGoogle Scholar
  25. 25.
    Fonnum, F., 1987, Biochemisty, anatomy, and pharmacology of GABA neurons. In Psychopharmacology: The Third Generation of Progress ( H.Y. Meltzer, ed.), Raven Press, New York.Google Scholar
  26. 26.
    Siegel, A., Roeling, T.A., Gregg, T.R. and Kruk, M.R., 1999, Neuropharmacology of brain-stimulation-evoked aggression. Neurosci Biobehav Rev 23: 359–389.PubMedCrossRefGoogle Scholar
  27. 27.
    Singhal, R.L. and Telner, J.l., 1983, Psychopharmacological aspects of aggression in animals and man. Psychiat J Univ Ottawa 8: 145–153.Google Scholar
  28. 28.
    Valzelli, L., 1984, Reflections on experimental and human pathology of aggression. Prog Neuro-Psychopharmacol and Bio! Psychiat 8: 311–325.Google Scholar
  29. 29.
    Clement, J., Simler, S., Ciesielski, L., Mandel, P., Cabib, S. and Puglisi-Allegra, S., 1987, Age-dependent changes of brain GABA levels, turnover rates and shock-induced aggressive behavior in inbred strains of mice. Pharmacol Biochem Behav 26: 83–88.PubMedCrossRefGoogle Scholar
  30. 30.
    Paredes,R.G. and Agmo, A., 1992, GABA and behavior: the role of receptor subtypes. Neurosci Biobehav Rev 16: 145–170.CrossRefGoogle Scholar
  31. 31.
    Simler, S., Puglisi-Allegra, S. and Mandel, P., 1983, Effects of n-di-propylacetate on aggressive behavior and brain GABA level is isolated mice. Pharmacol Biochem Behav 18: 717–720.PubMedCrossRefGoogle Scholar
  32. 32.
    Mandel, P., Ciesielski, L, Maitre, M., Simler, S., Mack, G. and Kempf, E., 1979, Involvement of central GABAergic systems in convulsions and aggressive behavior. Adv Exp Med Bio! 123: 475–492.Google Scholar
  33. 33.
    Rodgers, R.J. and Depaulis, A., 1982, GABAergic influences on defensive fighting in rats. Pharmacol Biochem Behav 17: 451–456.PubMedCrossRefGoogle Scholar
  34. 34.
    Sulcova, A., Krsiak, M. and Masek, K., 1978, Effects of baclofen on agonistic behavior in mice. Activ Nervosa Superior 20: 241–242.Google Scholar
  35. 35.
    Delini-Stula, A. and Vassout, A., 1978a, Modulatory effects of baclofen, muscimol and GABA on interspecific aggressive behavior in the rat. Neuropharmacology 17: 1063–1065.PubMedCrossRefGoogle Scholar
  36. 36.
    Delini-Stula, A. and Vassout, A., 1978b, Influence of baclofen and GABA-mimetic agents on spontaneous and olfactory bulb ablation induced muricidal behavior in rats.Google Scholar
  37. 37.
    File, S.E., Zharkovsky, A. and Gulati, K., 1991, Effects of baclofen and nitrendipine on ethanol withdrawal responses in the rat. Neuropharmacology 30: 183–190.PubMedCrossRefGoogle Scholar
  38. 38.
    Shipley Boyle, B., 1967, The Shipley Institute of Living Scale. Western Psychological Services, Los Angeles, CA.Google Scholar
  39. 39.
    First, M.B., Spitzer, R.L., Gibbon, M. and Williams, J.B.W., 1996, Structured Clinical Interview for DSM-IV Axis I Disorders, Biometrics Research Department, NYSPI, New York.Google Scholar
  40. 40.
    Buss, A.H., 1961, The Psychology of Aggression, John Wiley and Sons, New York.CrossRefGoogle Scholar
  41. 41.
    Shapira, B., Yagmur, M.J., Gropp, C., Newman, M., and Lerer, B., 1992, Effects of clomipramine and lithium on fenfluramine induced hormone release in major depression. Bio! Psychiat 31: 975–983.CrossRefGoogle Scholar
  42. 42.
    Bonanno, G., Fassio, A., Severi, P., Ruelle, A. and Raiteri, M., 1994, Fenfluramine releases serotonin from human brain nerve endings by a dual mechanism. JNeurochem 63: 1163–1166.CrossRefGoogle Scholar
  43. 43.
    Cinquanta, M., Frittoli, E., Mennini, T. and Gobbi, M., 1997, Further evidence of Ca++ dependent, exocytotic-like serotonin release induced by d-fenfluramine. Pharmacol Res 35: 439–442.PubMedCrossRefGoogle Scholar
  44. 44.
    Cinquanta, M., Ratovitski, T., Crespi, D., Gobbi, M., Mennini, T. and Simantov, R., 1997, Carrier-mediated serotonin release induced by d-fenfluramine: studies with human neuroblastoma cells transfected with rat serotonin transporter. Neuropharmacology 36: 803–809.PubMedCrossRefGoogle Scholar
  45. 45.
    Fuller, R.W., Snoddy, H.D. and Robertson, D.W., 1988, Mechanisms of effects of dfenfluramine on brain serotonin metabolism in rats: uptake inhibition versus release. Pharmacol Biochem Behav 30: 715–721.PubMedCrossRefGoogle Scholar
  46. 46.
    Abel, K.M. and Cleare, A.J., 1999, Peripheral hormonal responses to d-fenfluramine as a probe of central serotonergic function in humans. Psychopharmacology 142: 68–72.PubMedCrossRefGoogle Scholar
  47. 47.
    Coccaro, E.F., Kavoussi, R.J., Cooper, T.B. and Hauger, R.L., 1996, Hormonal responses to d-and d,l-fenfluramine in healthy subjects. Neuropsychopharmacology 15: 595–607.PubMedCrossRefGoogle Scholar
  48. 48.
    Monteleone, P., Brambilla, F., Bortolotti, F., Ferraro, C. and Maj, M., 1998, Plasma prolactin response to d-fenfluramine is blunted in bulimic patients with frequent binge episodes. Psycho! Med 28: 325–338.Google Scholar
  49. 49.
    Nathan, K.I., Musselman, D.L., Schatzberg, A.F. and Nemeroff, C.B., 1995, In Textbook of Psychopharmacology, (AF Schatzberg and CB Nemeroff, eds), American Psychiatric Press, Washington, DC, pp 439–477.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Don R. Cherek
    • 1
  • Scott D. Lane
    • 1
  1. 1.Human Psychopharmacology Laboratory, Department of Psychiatry and Behavioral Sciences, Mental Sciences InstituteUniversity of Texas Health Science Center at HoustonHoustonUSA

Personalised recommendations