Molecular Place Changes and Mechanical Damping Spectra

  • Günther Hartwig
Part of the The International Cryogenics Monograph Series book series (ICMS)


The loosely packed structure of amorphous polymers makes it possible that, for small segments or side groups, two (or more) neighboring potential minima exist which are separated by a small potential barrier ΔΦ. Place changes between two potential minima take time, the so-called relaxation time τ. It is a function of the potential distribution and the temperature. By external mechanical or dielectric loading the populations of the double well minima are disturbed (see Fig.6.10). The equilibrium is restored by place changes. As the relaxation time of place changes is finite, there is a delay between loading and deformation of a material, which causes dissipation of the loading energy. For cyclic loading a loss-angleδ occurs between stress and strain, which is a function of the temperature and of the load frequency. It determines the damping behavior.


Relaxation Time Potential Barrier Side Group Plateau Region Amorphous Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 6.1
    Hunklinger,S.and A.K.Raychandhur; Z. Phys. B., Condensed Matter 57, (1984) and Progr. in Low Temp. Phys. IX, (1986) p. 265; Ed. D.F. Brewer, Elsevier Sci Publ.Google Scholar
  2. 6.2
    Hunklinger, S.; in: “Phonon Scattering in Condensed Matter,” Solid State Science 51, (1984) 378, Eds.: W. Eisenmenger, K. Laßmann and S. Döttinger, Springer Verlag, Berlin.Google Scholar
  3. 6.3
    Mc Crum, N.G. in Ref. 1.2, p. 10.Google Scholar
  4. 6.4
    Schatzki, T.K.; J. Polymer Sci. 57 (1962) 496.Google Scholar
  5. 6.5
    Shimizu, K.; O.Yano and Y.Wada; J. Polymer Sci. 13 (1975) 2357 ( Polymer Phys. Ed.).Google Scholar
  6. 6.6
    Koppelmann, J.; Progr. Colloid + Polymer Sci. 66 (1979) 235.CrossRefGoogle Scholar
  7. 6.7
    Heijboer,J.and M.Pineri;in: “Nonmetallic Materials and Composites at Low Temperatures”, Vol. II (1980), p. 89, Eds. Hartwig, G.; Evans, D.;-Plenum Press; New York.Google Scholar
  8. 6.8
    Shimizu, K.; O.Yano, and Y.Wada; J. Polymer Sci. 11 (1973) 1644 ( Polymer Phys. Ed.).Google Scholar
  9. 6.9
    Federle,G. and S.Hunklinger; in: “Nonmetallic Materials and Composites at Low Temperatures,” Vol. II (1980), p. 49, Eds. Hartwig, G.and Evans, D.;-Plenum Press.Google Scholar
  10. 6.10
    Geiß, N.; G.Kaspar and S.Hunklinger; in: “Nonmetallic Materials and Composites at Low Temperatures,” Vol. III (1986), p. 99, Eds. Hartwig, G. and Evans, D.; Plenum Press.Google Scholar
  11. 6.11
    Hickel, W. and G.Kaspar; Cryogenics 28 (1988).Google Scholar
  12. 6.12
    Hartwig, G.; in Ref. 1.8.Google Scholar
  13. 6.13
    Ahlborn, K.; Cryogenics 28 (1988) 234.CrossRefGoogle Scholar
  14. 6.14
    Blochinzew, D.J.; Grundlagen der Quantenmechanik (1953), p. 350, Deutscher Verlag der Wissenschaften, Berlin.Google Scholar
  15. 6.15
    from Ref. 1.4 p. 166.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Günther Hartwig
    • 1
    • 2
  1. 1.Kernforschungszentrum KarlsruheKarlsruheGermany
  2. 2.Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations