Thermal Conductivity

  • Günther Hartwig
Chapter
Part of the The International Cryogenics Monograph Series book series (ICMS)

Abstract

Thermal conduction comprises essentially that portion of phonon transport in which, different from sound propagation, the frequency, the phase and the polarization of the phonons are not maintained. Thermal conductivity is a process in which an inhomogeneous thermal excitation initiates various thermodynamic relaxation processes and thus gives rise to a more or less slow transport of energy with permanent local thermalization. The resulting temperature gradient drives the flux of energy carriers which in the case of insulators are phonons. The relationship between the flux of heat power Q per area A and the temperature gradientn is given by the coefficient of thermal conductivity k.

Keywords

Thermal Conductivity Free Path Thermal Resistance Amorphous Polymer Semicrystalline Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 5.1
    Kittel, Ch.; Introduction in Solid State Physics, J. Willey Sons, Inc. New York; (1971); p. 268Google Scholar
  2. 5.2
    Ziman, J.M.; Electrons and Phonons, Oxford, Clarendon Press; (1960); p. 228.Google Scholar
  3. 5.3
    Finlayson, D.M. and P. Mason, J. Phys. C.; (Solid State Phys.), 18 (1985); p. 1791.CrossRefGoogle Scholar
  4. 5.4
    Phillips, W.A.; Phys. Rev. 3 (1971); p. 4338.Google Scholar
  5. 5.5
    Zaitlin, M.P. and A.C. Anderson,; Phys. Rev. B, 12 (1975); p. 4475.CrossRefGoogle Scholar
  6. 5.6
    Farrell, D.E., J.E. de Oliveira, and H.M. Rosenberg,; Proceedings 4th. Int. Conference, Uni Stuttgart, Springer Press (1984); p. 422.Google Scholar
  7. 5.7
    Tua, P.F., S.J. Putterman, and R. Orbach,; Phys. Lett. 98 A (1983); p. 357.Google Scholar
  8. 5.8
    Reese, W. and J.E.Tucker,; J. Chem. Phys. 43 (1965); p. 105.Google Scholar
  9. 5.9
    Engeln, J. and M. Meissner; in “Nonmetallic Materials and Composites at Low Temperatures”; Vol. 2; Plenum Press; (1980); p. 14.Google Scholar
  10. 5.10
    Kolough, R.J. and R.G. Brown,: J. Appl. Phys. 39 (1968); p. 3999.CrossRefGoogle Scholar
  11. 5.11
    Schmidt, C.; Cryogenics, Jan. 1975; p. 17.Google Scholar
  12. 5.12
    Andersen, A.C. and R.B. Rauch; J. Appl. Phys.; Vol. 11 (1970); p. 3648 and R.E.Peterson, and A.C. Anderson,; J. Low Temp. Phys. II (1973); p. 639.Google Scholar
  13. 5.13
    Choy, C.L. and D. Greig,; J. Phys. C., Solid State Phys. 8 (1975); p. 3121.CrossRefGoogle Scholar
  14. 5.14
    Claudet, G., F. Disdier, and M. Locatelli; in “Nonmetallic Materials and Composites at Low Temperatures”, Vol. 2, p. 131, Plenum Press (1979).Google Scholar
  15. 5.15
    Greig,D. and M.Sahota; in “Nonmetallic Materials and Composites at Low Temperatures” Vol. 3,p.9. Eds.: Hartwig, G., Evans, D.;Plenum Press; New York (1986)Google Scholar
  16. 5.16
    Choy, C.L. and D. Greig,; J. Phys. C., Solid State Phys. 10 (1977); p. 169.CrossRefGoogle Scholar
  17. 5.17
    Reese, W.; J. Appl. Phys. 37 (1966); p. 864.CrossRefGoogle Scholar
  18. 5.18
    Hartwig, G.; Progr. Colloid + Polymer Sci. 64 (1978); p. 56CrossRefGoogle Scholar
  19. 5.19
    Kelham, S. and H.M. Rosenberg,; J. Phys. C., Solid State Phys. 14 (1981); p.1737. 5.20 Berman, B.L., R.P. Madding, and J.R. Dillinger,; Phys. Rev. Lett., 30 A (1969); p. 315Google Scholar
  20. 5.20
    Berman, B.L., R.P. Madding, and J.R. Dillinger,; Phys. Rev. Lett., 30 A (1969); p.315Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Günther Hartwig
    • 1
    • 2
  1. 1.Kernforschungszentrum KarlsruheKarlsruheGermany
  2. 2.Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations