Advertisement

Thermal Expansion and the Grueneisen Relation

  • Günther Hartwig
Chapter
Part of the The International Cryogenics Monograph Series book series (ICMS)

Abstract

The linear thermal expansion coefficient a is defined by the relative length change per temperature variation
$$ \alpha = \frac{{dL}}{{dT}}\frac{1}{L} ; {K^{ - 1}} $$
(4.1a)
For an isotropic solid the volume expansion coefficient β is given by
$$ \beta = \frac{{dV}}{{dT}}\frac{1}{V} = 3\alpha ; {K^{ - 1}} $$
(4.1b)
The experimentally measured quantity is the integral thermal expansion
$$ \frac{{\Delta L}}{{{L_0}}} = \int_{293}^T {\alpha (T)dT} $$
(4.2)
where the reference temperature is 293K and L0 =L(293K). In this definition, for a positive a, the quantity ΔL/L0 becomes negative for cooling. For many technical purposes the integral thermal expansion is more directly applicable, but for physical interpretations the differential quantity a is of more significance. Thermal expansion is one of the thermodynamic properties which has been investigated for three centuries. Nevertheless, theoretical explanations are still difficult, since several types of binding potentials and vibrational modes are involved and influences from the glass transitions are superimposed.

Keywords

Thermal Expansion Glass Transition Bulk Modulus Transverse Vibration Amorphous Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 4.1
    Kittel, Ch; Introduction to Solid State Physics; p. 228; John Wiley and Sons, New York (1973).Google Scholar
  2. 4.2
    Barron, T.H.K., Collins, J.G. and Shite, G.K.; Adv. in Phys. 29 (1980); p. 609.CrossRefGoogle Scholar
  3. 4.3
    Wada, Y.A., Itani, T. Nishi and Nagai, S.; Polym. Sci. 7 (1969), p. 201 (Part A2).Google Scholar
  4. 4.4
    Curro, J.G.; J. Chem Phys. 58 (1973); p. 374.CrossRefGoogle Scholar
  5. 4.5
    Engeln, J. and Meissner, M. in “Nonmetallic Materials and Composites at Low Temperatures ”, Vol. 2; p. 1, Eds.: Hartwig, G. and Evans, D., Plenum Press (1982).Google Scholar
  6. 4.6
    Engeln, J.; Thesis, TU Berlin, (1983), D 83, p. 243.Google Scholar
  7. 4.7
    White, G.K. in: “Nonmetallic Materials and Composites at Low Temperatures ”, Vol. 3; p. 1, Eds.: Hartwig, G. and Evans, D., Plenum Press (1986).Google Scholar
  8. 4.
    White, G.K. and Choy, C.L.; J. Polym Sci. 22 (1984); p. 843 (Phys. Ed.).Google Scholar
  9. 4.9
    Smith, K. J. Jr.; Polymer Engineering and Sci. 24 (1984); p. 205.CrossRefGoogle Scholar
  10. 4.10
    Choy, C.L., Chen, F.C. and Ong, E.L.; Polymer Sci. 20 (1979); p. 1191.Google Scholar
  11. 4.11
    Simha, S.C. and Boyer, R.F.; J. Chem. Phys. 37 (1962); p. 1003.CrossRefGoogle Scholar
  12. 4.12
    Ashcroft, W.N. and Mermin, N.D.; “Solid State Physics” Cornell University.Google Scholar
  13. 4.13
    Busch, G. and Schade, H.; Vorlesungen über Festkörperphysik; Birkhauser Verlag, Basel (1973).Google Scholar
  14. 4.14
    Barker, R.E. Jr. and Chen, R.Y.S.; J. Chem Phys. 53 (1970); p. 2616.CrossRefGoogle Scholar
  15. 4.15
    Matsushige, K., Hirakawa, S. and Takemura, T.; Memoirs of the Faculty of Engineering, Kyushu Uni., Vol. 32 (1972); p. 153.Google Scholar
  16. 4.16
    Sharma, B.K.; Polymer 24 (1983); p. 314.CrossRefGoogle Scholar
  17. 4.17
    Wu, C.K., Jura, G. and Shen, M.; J. Appl. Phys. Vol. 43 (1972); p. 4348.CrossRefGoogle Scholar
  18. 4.18
    Chen, F.C., Choy, C.L., Wong, S.P. and Young, K.; J. Polymer Sci. 19 (1981); p. 971.Google Scholar
  19. 4.19
    Yamamoto, K. and Wada, J. Y.; Phys. Soc. Jpn. 11 (1956); p. 887.CrossRefGoogle Scholar
  20. 4.20
    Federle, G. and Hunklinger, S. in “Nonmetallic Materials and Composites at Low Temperatures ”, Vol. 2; p. 49, Eds.: Hartwig, G. and Evans, D., Plenum Press (1982).Google Scholar
  21. 4.21
    Wright, O.B. and Phillips, W.A.; Philosoph Mag. B 50 (1984); p. 63.CrossRefGoogle Scholar
  22. 4.22
    Tietje, H., Schickfus,.v.M and Gmelin, E.; Z. Phys. B - Condensed Matter, 64 (1986); p. 95.CrossRefGoogle Scholar
  23. 4.23
    Schickfus, M.v., Hunklinger, S. and Transfeld, K. in “Nonmetallic Materials and Composites at Low Temperatures ”, Vol. 2; p. 37, Eds.: Hartwig, G. and Evans, D., Plenum Press (1982).Google Scholar
  24. 4.24
    Wang, Li-Hui, Choy, C.L. and Porter, R.S.; J. Polymer Sci. 20 (1982); p. 633.Google Scholar
  25. 4.25
    Wang, Li-Hui, Choy, C.L. and Porter, R.S.; J. Polymer Sci. 21 (1983); p. 657 (Polymer Phys. Ed.).Google Scholar
  26. 4.26
    Boyer, J.D., Lasjaunias, J.C., Fisher, R.A. and Phillips, N.E.; J. Non Crist. Solids 55 (1983); p. 413CrossRefGoogle Scholar
  27. 4.27
    Schwarz, G.; Cryogenics 28 (1988); p. 248.CrossRefGoogle Scholar
  28. 4.28
    Hartwig, G.; Cryogenics 28 (1988); p. 255.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Günther Hartwig
    • 1
    • 2
  1. 1.Kernforschungszentrum KarlsruheKarlsruheGermany
  2. 2.Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations