The Interaction between Polymeric Structure, Deformation and Fracture

  • M. L. Williams
  • F. N. Kelley


The authors have recently been attempting to establish a connection between the molecular composition and the mechanical characterization of predominantly linear viscoelastic polymers in order to provide a means of directly assessing the impact of chemical structure upon engineering design. Preliminary examples using continuum mechanics and principles of three-dimensional stress analysis showed, for example, the interaction between chain stiffness and deformation and fracture. This morphological approach, utilizing an Interaction Matrix, will be reviewed in order to stimulate discussion. In addition, some possible connections between molecular structure and the specific characteristic fracture energy will be reported.


Fracture Energy Interaction Matrix Network Chain Relaxation Modulus Relaxation Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Zwicky, Morphological Astronomy, Springer-Verlag Berlin, Gottingen, Heidelberg, 1957.CrossRefGoogle Scholar
  2. 2.
    F. Zwicky and A. G. Wilson, New Methods of Thought and Procedure, Springer-Verlag New York, Inc., 1967.CrossRefGoogle Scholar
  3. 3.
    M. L. Williams and F. N. Kelley, “The Relation Between Engineering Stress Analysis and Molecular Parameters in Polymeric Materials,” Proc. 5th Internat’l. Cong. Soc. Rheology, October 1968, University of Tokyo Press (1970), 185–202.Google Scholar
  4. 4.
    F. N. Kelley and M. L. Williams, Rubber Chem. & Tech. 42, 1175 (1969).Google Scholar
  5. 5.
    M. L. Williams and F. N. Kelley, CPIA Publication No. 193, Vol. 1, Johns Hopkins University, Applied Physics Laboratory, March 1970, 89–105.Google Scholar
  6. 6.
    J. D. Ferry, Viscoe Zastic Properties of Polymers, John Wiley & Sons, Inc., New York, 1961.Google Scholar
  7. 7.
    M. L. Williams, AIAA Journal 2, 785 (1964).CrossRefGoogle Scholar
  8. 8.
    M. L. Williams, R. F. Landel and J. D. Ferry, Journal Am. Chem. Soc. 77, 3701 (1955).CrossRefGoogle Scholar
  9. 9.
    P. E. Rouse, J. Chem. Phys. 21, 1272 (1953).CrossRefGoogle Scholar
  10. 10.
    A. V. Tobolsky, Properties and Structure of Polymers, John Wiley & Sons, Inc., New York (1960).Google Scholar
  11. 11.
    F. Bueche, Physical Properties of Polymers, John Wiley & Sons, Inc., New York (1962).Google Scholar
  12. 12.
    P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York, 1953.Google Scholar
  13. 13.
    L. R. G. Treloar, The Physics of Rubber Elasticity, 2nd Ed., Clarendon, Oxford, 1958.Google Scholar
  14. 14.
    W. Kuhn, Kolloid Z. 76, 258 (1936)CrossRefGoogle Scholar
  15. W. Kuhn, Kolloid Z. 87, 3 (1939).CrossRefGoogle Scholar
  16. 15.
    F. N. Kelley, PhD. Dissertation, University of Akron (1961).Google Scholar
  17. 16.
    J. H. Hildebrand, J. Am. Chem. Soc. 51, 66 (1929).CrossRefGoogle Scholar
  18. 17.
    G. Gee, Trans. IRI 18, 266 (1943); Advances in Colloid Sci. II, Interscience Publishers, New York (1946).Google Scholar
  19. 18.
    F. Bueche, J. Chem. Phys. 20, 1959 (1952)CrossRefGoogle Scholar
  20. F. Bueche, J. Chem. Phys. 25, 599 (1956).CrossRefGoogle Scholar
  21. 19.
    F. N. Kelley and F. Bueche, J. Poly. Sci. 50, 549 (1961).CrossRefGoogle Scholar
  22. 20.
    R. F. Landel, Trans. Soc. Rheology 2, 53 (1958).CrossRefGoogle Scholar
  23. 21.
    A. V. Tobolsky and E. Catsiff, J. Poly. Sci. 19, 111 (1956).CrossRefGoogle Scholar
  24. 22.
    R. F. Landel and R. F. Fedors, JPL Space Programs Summary 37–36, IV, Jet Propulsion Laboratory, 137 (1965).Google Scholar
  25. 23.
    R. F. Landel, California Institute of Technology Report, CHECIT PL 68–1, June 1968.Google Scholar
  26. 24.
    K. Ninomiya and H. Fujita, J. Coll. Sci. 12, 204 (1957)CrossRefGoogle Scholar
  27. K. Ninomiya and H. Fujita, J. Poly. Sci. 24, 233 (1957)CrossRefGoogle Scholar
  28. K. Ninomiya and H. Fujita, J. Phys. Chem. 61, 814 (1957).Google Scholar
  29. 25.
    M. L. Williams, Intl. J. Frac. Mech. 1, 292 (1965).Google Scholar
  30. 26.
    M. L. Williams, J. Appt. Phys. 38, 4476 (1967).CrossRefGoogle Scholar
  31. 27.
    S. J. Bennett, G. P. Anderson and M. L. Williams, J. Appt. Poly. Sci. 14, 735 (1970).CrossRefGoogle Scholar
  32. 28.
    M. L. Williams, J. AppZ. Poly. Sci. 13, 29 (1969).CrossRefGoogle Scholar
  33. 29.
    M. L. Williams, J. AppZ. Poly. Sci. 14, 1121 (1970).CrossRefGoogle Scholar
  34. 30.
    H. W. Greensmith and A. G. Thomas, J. PoZy. Sci. 18, 189 (1955).CrossRefGoogle Scholar
  35. 31.
    J. J. Benbow, Proc. Phys. Soc. (London) 78, 970 (1961).CrossRefGoogle Scholar
  36. 32.
    L. J. Broutman and T. Kobayashi, ACS Polymer Preprints 10, September 1969.Google Scholar
  37. 33.
    J. P. Berry, J. Poly. Sci. 2, 4069 (1964).Google Scholar
  38. 34.
    For review of the subject see B. Rosen (Ed.), Fracture Processes in Polymeric Solids, John Wiley & Sons, Inc. (1964).Google Scholar
  39. 35.
    F. Bueche and J. C. Halpin, J. AppZ.Phys. 35, 36 (1964).CrossRefGoogle Scholar
  40. 36.
    E. H. Andrews, Fracture in Polymers, American Elsevier, New York (1968).Google Scholar
  41. 37.
    G. J. Lake and A. G. Thomas, Proc. Roy. Soc. A, 300, 1460 (1967).Google Scholar
  42. 38.
    K. E. Polmanteer, J. A. Thorne, and J. D. Helmer, Rubber Chem. Tech. 39, 1403 (1966).CrossRefGoogle Scholar
  43. 39.
    G. E. Warnaka and H. T. Miller, Rubber Chem. Tech. 37, 1421 (1966).CrossRefGoogle Scholar
  44. 40.
    L. Mullins, Trans. Inst. Rubber Ind. 35, 213 (1959).Google Scholar
  45. 41.
    E. A. DiMarzio, J. Res. NBS, 68A, 611 (1964).CrossRefGoogle Scholar
  46. 42.
    L. A. Nielsen, Cross-Linking Effect on Physical Properties of Polymers, Washington University/ONR/ARPA Report HPC 68–57 (1968).Google Scholar
  47. 43.
    T. G. Fox and P. J. Flory, J. App Z. Phys. 21, 581 (1950).CrossRefGoogle Scholar
  48. 44.
    J. P. Berry, J. Poly. Sci. 50, 107 (1961).CrossRefGoogle Scholar
  49. 45.
    G. Gee, P. N. Hartley, J. B. M. Herbert, and H. A. Lanceley, Polymer 1, 365 (1960).CrossRefGoogle Scholar
  50. 46.
    T. L. Smith and R. A. Dickie, J. Polymer Sci., A27, 635 (1969).Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • M. L. Williams
    • 1
  • F. N. Kelley
    • 2
  1. 1.University of UtahSalt Lake CityUSA
  2. 2.Air Force Rocket Propulsion LabEdwardsUSA

Personalised recommendations