Skip to main content

The Interaction between Polymeric Structure, Deformation and Fracture

  • Chapter
Polymer Networks

Summary

The authors have recently been attempting to establish a connection between the molecular composition and the mechanical characterization of predominantly linear viscoelastic polymers in order to provide a means of directly assessing the impact of chemical structure upon engineering design. Preliminary examples using continuum mechanics and principles of three-dimensional stress analysis showed, for example, the interaction between chain stiffness and deformation and fracture. This morphological approach, utilizing an Interaction Matrix, will be reviewed in order to stimulate discussion. In addition, some possible connections between molecular structure and the specific characteristic fracture energy will be reported.

Major portions of this research were supported under a Project THEMIS grant, The Chemistry and Mechanics of Combustion with Applications to Rocket Engine Systems, administered by the U. S. Air Force Office of Scientific Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Zwicky, Morphological Astronomy, Springer-Verlag Berlin, Gottingen, Heidelberg, 1957.

    Book  Google Scholar 

  2. F. Zwicky and A. G. Wilson, New Methods of Thought and Procedure, Springer-Verlag New York, Inc., 1967.

    Book  Google Scholar 

  3. M. L. Williams and F. N. Kelley, “The Relation Between Engineering Stress Analysis and Molecular Parameters in Polymeric Materials,” Proc. 5th Internat’l. Cong. Soc. Rheology, October 1968, University of Tokyo Press (1970), 185–202.

    Google Scholar 

  4. F. N. Kelley and M. L. Williams, Rubber Chem. & Tech. 42, 1175 (1969).

    Google Scholar 

  5. M. L. Williams and F. N. Kelley, CPIA Publication No. 193, Vol. 1, Johns Hopkins University, Applied Physics Laboratory, March 1970, 89–105.

    Google Scholar 

  6. J. D. Ferry, Viscoe Zastic Properties of Polymers, John Wiley & Sons, Inc., New York, 1961.

    Google Scholar 

  7. M. L. Williams, AIAA Journal 2, 785 (1964).

    Article  Google Scholar 

  8. M. L. Williams, R. F. Landel and J. D. Ferry, Journal Am. Chem. Soc. 77, 3701 (1955).

    Article  CAS  Google Scholar 

  9. P. E. Rouse, J. Chem. Phys. 21, 1272 (1953).

    Article  CAS  Google Scholar 

  10. A. V. Tobolsky, Properties and Structure of Polymers, John Wiley & Sons, Inc., New York (1960).

    Google Scholar 

  11. F. Bueche, Physical Properties of Polymers, John Wiley & Sons, Inc., New York (1962).

    Google Scholar 

  12. P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York, 1953.

    Google Scholar 

  13. L. R. G. Treloar, The Physics of Rubber Elasticity, 2nd Ed., Clarendon, Oxford, 1958.

    Google Scholar 

  14. W. Kuhn, Kolloid Z. 76, 258 (1936)

    Article  CAS  Google Scholar 

  15. W. Kuhn, Kolloid Z. 87, 3 (1939).

    Article  CAS  Google Scholar 

  16. F. N. Kelley, PhD. Dissertation, University of Akron (1961).

    Google Scholar 

  17. J. H. Hildebrand, J. Am. Chem. Soc. 51, 66 (1929).

    Article  CAS  Google Scholar 

  18. G. Gee, Trans. IRI 18, 266 (1943); Advances in Colloid Sci. II, Interscience Publishers, New York (1946).

    Google Scholar 

  19. F. Bueche, J. Chem. Phys. 20, 1959 (1952)

    Article  CAS  Google Scholar 

  20. F. Bueche, J. Chem. Phys. 25, 599 (1956).

    Article  CAS  Google Scholar 

  21. F. N. Kelley and F. Bueche, J. Poly. Sci. 50, 549 (1961).

    Article  CAS  Google Scholar 

  22. R. F. Landel, Trans. Soc. Rheology 2, 53 (1958).

    Article  Google Scholar 

  23. A. V. Tobolsky and E. Catsiff, J. Poly. Sci. 19, 111 (1956).

    Article  CAS  Google Scholar 

  24. R. F. Landel and R. F. Fedors, JPL Space Programs Summary 37–36, IV, Jet Propulsion Laboratory, 137 (1965).

    Google Scholar 

  25. R. F. Landel, California Institute of Technology Report, CHECIT PL 68–1, June 1968.

    Google Scholar 

  26. K. Ninomiya and H. Fujita, J. Coll. Sci. 12, 204 (1957)

    Article  CAS  Google Scholar 

  27. K. Ninomiya and H. Fujita, J. Poly. Sci. 24, 233 (1957)

    Article  Google Scholar 

  28. K. Ninomiya and H. Fujita, J. Phys. Chem. 61, 814 (1957).

    Google Scholar 

  29. M. L. Williams, Intl. J. Frac. Mech. 1, 292 (1965).

    CAS  Google Scholar 

  30. M. L. Williams, J. Appt. Phys. 38, 4476 (1967).

    Article  Google Scholar 

  31. S. J. Bennett, G. P. Anderson and M. L. Williams, J. Appt. Poly. Sci. 14, 735 (1970).

    Article  CAS  Google Scholar 

  32. M. L. Williams, J. AppZ. Poly. Sci. 13, 29 (1969).

    Article  CAS  Google Scholar 

  33. M. L. Williams, J. AppZ. Poly. Sci. 14, 1121 (1970).

    Article  CAS  Google Scholar 

  34. H. W. Greensmith and A. G. Thomas, J. PoZy. Sci. 18, 189 (1955).

    Article  CAS  Google Scholar 

  35. J. J. Benbow, Proc. Phys. Soc. (London) 78, 970 (1961).

    Article  CAS  Google Scholar 

  36. L. J. Broutman and T. Kobayashi, ACS Polymer Preprints 10, September 1969.

    Google Scholar 

  37. J. P. Berry, J. Poly. Sci. 2, 4069 (1964).

    Google Scholar 

  38. For review of the subject see B. Rosen (Ed.), Fracture Processes in Polymeric Solids, John Wiley & Sons, Inc. (1964).

    Google Scholar 

  39. F. Bueche and J. C. Halpin, J. AppZ.Phys. 35, 36 (1964).

    Article  CAS  Google Scholar 

  40. E. H. Andrews, Fracture in Polymers, American Elsevier, New York (1968).

    Google Scholar 

  41. G. J. Lake and A. G. Thomas, Proc. Roy. Soc. A, 300, 1460 (1967).

    Google Scholar 

  42. K. E. Polmanteer, J. A. Thorne, and J. D. Helmer, Rubber Chem. Tech. 39, 1403 (1966).

    Article  CAS  Google Scholar 

  43. G. E. Warnaka and H. T. Miller, Rubber Chem. Tech. 37, 1421 (1966).

    Article  Google Scholar 

  44. L. Mullins, Trans. Inst. Rubber Ind. 35, 213 (1959).

    CAS  Google Scholar 

  45. E. A. DiMarzio, J. Res. NBS, 68A, 611 (1964).

    Article  Google Scholar 

  46. L. A. Nielsen, Cross-Linking Effect on Physical Properties of Polymers, Washington University/ONR/ARPA Report HPC 68–57 (1968).

    Google Scholar 

  47. T. G. Fox and P. J. Flory, J. App Z. Phys. 21, 581 (1950).

    Article  CAS  Google Scholar 

  48. J. P. Berry, J. Poly. Sci. 50, 107 (1961).

    Article  CAS  Google Scholar 

  49. G. Gee, P. N. Hartley, J. B. M. Herbert, and H. A. Lanceley, Polymer 1, 365 (1960).

    Article  CAS  Google Scholar 

  50. T. L. Smith and R. A. Dickie, J. Polymer Sci., A27, 635 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer Science+Business Media New York

About this chapter

Cite this chapter

Williams, M.L., Kelley, F.N. (1971). The Interaction between Polymeric Structure, Deformation and Fracture. In: Chompff, A.J., Newman, S. (eds) Polymer Networks. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6210-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6210-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6212-9

  • Online ISBN: 978-1-4757-6210-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics