Intermolecular Forces in Polymers and Liquids

  • Robert E. Cuthrell


A variety of physical properties of several liquids and polymers can be quantitatively described by considering a crystalline arrangement of molecules or other volume elements bound by non-directional forces. In some cases we propose that the intermolecular forces in the liquid or solid under question are simply due to van der Waals interactions. In those cases we demonstrate that physical properties such as surface energy, cohesive strength, compressibility, thermal expansion, and work of vaporization can be calculated from atomic constants and related to one another by the proposed model. In the case of other liquids and polymers, intermolecular forces cannot be described in terms of van der Waals binding alone and other (directional) forces such as dipole-dipole binding must be included. It will be shown that a variety of the calculated properties favorably compare with experimental results.


Surface Tension Carbon Tetrachloride Intermolecular Force Epoxy Polymer Compression Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. de Boer, Trans. Faraday Soc. 32, 11 (1936).CrossRefGoogle Scholar
  2. 2.
    D. J. Pastine, J. Chem. Phys. 49, 3012 (1968).CrossRefGoogle Scholar
  3. 3.
    R. Ulbrich, Z. Naturforsch., 21, 763 (1966).Google Scholar
  4. 4.
    A. Muller, Proc. Roy. Soc. (London) A154, 624 (1936)CrossRefGoogle Scholar
  5. A. Muller, Proc. Roy. Soc. (London) A178, 227 (1941).CrossRefGoogle Scholar
  6. 5.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, “Molecular Theory of Gases and Liquids,” John Wiley & Sons, Inc., New York, 1967, p. 1040.Google Scholar
  7. 6.
    C. Kittel, “Introduction to Solid State Physics,” John Wiley & Sons, Inc., New York, 1957, p. 78.Google Scholar
  8. 7.
    S. Glasstone, “Thermodynamics for Chemists,” D. Van Nostrand Co., Inc., New York, 1960, p. 205.Google Scholar
  9. 8.
    C. Kittel, op. cit., p. 152.Google Scholar
  10. 9.
    R. J. Good, Intermolecular and Interatomic Forces, R. L. Patrick, ed., “Treatise on Adhesion and Adhesives,” Vol. 1: Theory, Marcel Dekker, Inc., New York, 1967, pp. 48–55.Google Scholar
  11. 10.
    F. London, Trans. Faraday Soc. 33, 8 (1937).CrossRefGoogle Scholar
  12. 11.
    H. Margenau, Rev. Mod. Phys. 11, 1 (1939).CrossRefGoogle Scholar
  13. 12.
    K. S. Pitzer, Adv. Chem. Physics 2, 59 (1959).Google Scholar
  14. 13.
    J. C. D. Brand and J. C. Speakman, “Molecular Structure,” Edward Arnold (Publishers), Ltd., London, 1960, p. 178.Google Scholar
  15. 14.
    D. E. Gray, et. al., ed., “American Institute of Physics Handbook,” McGraw-Hill Book Co., Inc., New York, 2nd Edition, 1963, p. 2: 186.Google Scholar
  16. 15.
    Interpolated from data in N. A. Lange, ed., “Handbook of Chemistry,” Handbook Publishers, Inc., Sandusky, Ohio, 9th Edition, 1956, p. 1649.Google Scholar
  17. 16.
    Calculated from data in R. C. Weast, et. al., “Handbook of Chemistry and Physics,” The Chemical Rubber Co., Cleveland, Ohio, 45th Edition, 1964, p. D:49.Google Scholar
  18. 17.
    Calculated from data in P. W. Bridgman, “Collected Experimental Papers,” Harvard University Press, Cambridge, Klass., 1964.Google Scholar
  19. 18.
    D. E. Gray, op. cit., p. 4: 75.Google Scholar
  20. 19.
    From radial electron density distribution curve for carbon tetrachloride at 298°K, T. J. Hughel, ed., “Liquids: Structure, Properties, Solid Interactions,” Elsevier Publishing Corp., New York, 1965, p. 191.Google Scholar
  21. 20.
    N. A. Lange, op. cit., pp. 1441–1442.Google Scholar
  22. 21.
    B. Linder, Disc. Faraday Soc. 40, 164 (1965).CrossRefGoogle Scholar
  23. 22.
    F. M. Fowkes, Ind. Eng. Chem. 56, 40 (1964)Google Scholar
  24. F. M. Fowkes, “Surfaces and Interfaces I,” Burke, et. al., ed., Syracuse University Press, 1967, pp. 197–224.Google Scholar
  25. 23.
    R. C. Weast, et. al., op. cit., p. F:19.Google Scholar
  26. 24.
    D. E. Gray, et. al., op. cit., p. 2: 188.Google Scholar
  27. 25.
    T. R. Guess, “Some Dynamic Mechanical Properties of an Epoxy,” SC-DR-343, June 1968, Sandia Corporation, Albuquerque, New Mexico.Google Scholar
  28. 26.
    J. A. Brydson, “Plastics Materials,” D. Van Nostrand Co., Inc., New Jersey, 1966.Google Scholar
  29. 27.
    The spall threshold reported by T. R. Guess, loc. cit., for the 828-z epoxy polymer and the tensile strength are assumed equivalent.Google Scholar
  30. 28.
    L. J. Briggs, J. App. Phys. 21, 721 (1950)CrossRefGoogle Scholar
  31. L. J. Briggs, J. Chem. Phys. 19, 970 (1951).CrossRefGoogle Scholar
  32. 29.
    M. Van Thiel, et. al., ed., “Compendium of Shock Wave Data,” Lawrence Radiation Laboratory, University of California, Livermore, California, UCRL-50108, 1966.Google Scholar
  33. 30.
    S. Glasstone, “Textbook of Physical Chemistry,” D. Van Nostrand Co., Inc., New York, 1959, p. 510.Google Scholar
  34. 31.
    M. Born and H. S. Green, Proc. Roy. Soc. (London) A190, 455 (1947).CrossRefGoogle Scholar
  35. 32.
    S. Glasstone, “Textbook of Physical Chemistry,” D. Van Nostrand Co., Inc., New York, 1959, p. 542.Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • Robert E. Cuthrell
    • 1
  1. 1.Sandia LaboratoriesAlbuquerqueUSA

Personalised recommendations