Thermoelasticity of Crosslinked Rubber Networks

  • M. Shen
  • T. Y. Chen
  • E. H. Cirlin
  • H. M. Gebhard

Summary

In recent publications we have demonstrated that by using a new equation, which is based on the temperature coefficient of shear modulus, the relative energy contribution (fu/f) to rubber elasticity can be shown to be independent of the applied strain. In this work, we have measured fu/f for natural rubber and polycis-1,4-butadiene at a series of degrees of crosslinking. Parallel equilibrium swelling studies in appropriate solvents were also made. It was found that fu/f is 0.17 for natural rubber and 0.10 for polycis-1,4-butadiene. These values are independent of the degree of crosslinking, except for the lowest degree of crosslinking. For the latter rubber networks, fu/f is 0.26 for natural rubber, and 0.34 for poly-cis-1,4-butadiene. Implications of these findings are discussed.

Keywords

Shear Modulus Natural Rubber Network Chain Crosslinking Density Configurational Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. SHEN AND P. J. BLATZ, J. APPL. PHYs., 39, 4937 (1968).CrossRefGoogle Scholar
  2. 2.
    M. Shen, Macromol., 2, 358 (1969).CrossRefGoogle Scholar
  3. 3.
    A. Ciferri, C. A. J. Hoeve and P. J. Flory, J. Am. Chem. Soc., 83, 1015 (1961).CrossRefGoogle Scholar
  4. 4.
    J. E. Mark and P. J. Flory, J. Am. Chem. Soc., 86, 138 (1964).CrossRefGoogle Scholar
  5. 5.
    A. Opschoor and W. Prins, J. Polymer Sci., C16, 1095 (1967).Google Scholar
  6. 6.
    P. J. Flory, C. A. J. Hoeve and A. Ciferri, J. Polymer Sci., 34, 337 (1959).CrossRefGoogle Scholar
  7. 7.
    P. J. Flory, J. Am. Chem. Soc., 78, 5222 (1956).CrossRefGoogle Scholar
  8. 8.
    A. V. Tobolsky, D. W. Carlson and N. Indictor, J. Polymer Sci., 54, 149 (1961).CrossRefGoogle Scholar
  9. 9.
    K. J. Smith, A. Greene and A. Ciferri, Kolleid. Z. u. Z. f. Polymere, 194, 49 (1964).CrossRefGoogle Scholar
  10. 10.
    L. D. Loan, J. Appl. Polymer Sci., 7, 2259 (1963).CrossRefGoogle Scholar
  11. 11.
    P. J. Flory, Principles of Polymer Chemistry, Cornell Univ. Press, Ithaca, N.Y., 1950.Google Scholar
  12. 12.
    P. Mason, Polymer, 5, 20 (1964).CrossRefGoogle Scholar
  13. 13.
    P. J. Flory, N. Rabjohn and M. C. Schaffer, J. Polymer Sci., 4, 225 (1949).CrossRefGoogle Scholar
  14. 14.
    D. Katz and A. V. Tobolsky, J. Polymer Sci., A2, 1595 (1964).Google Scholar
  15. 15.
    A. Ciferri, Makromol. Chem., 43, 152 (1961).CrossRefGoogle Scholar
  16. 16.
    R. J. Roe and W. R. Krigbaum, J. Polymer Sci., 61, 167 (1962).CrossRefGoogle Scholar
  17. 17.
    M. Shen, D. A. McQuarrie and J. L. Jackson, J. Appl. Phys., 38, 791 (1967).CrossRefGoogle Scholar
  18. 18.
    G. Crespi and U. Flisi, Makromol. Chem., 60, 191 (1963).CrossRefGoogle Scholar
  19. 19.
    G. Moraglio, European Polymer J., 1, 103 (1965).CrossRefGoogle Scholar
  20. 20.
    B. M. E. van der Hoff, J. Macromol. Sci., A1, 747 (1967).CrossRefGoogle Scholar
  21. 21.
    M. Shen, J. Appl. Phys., in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • M. Shen
    • 1
  • T. Y. Chen
    • 1
  • E. H. Cirlin
    • 2
  • H. M. Gebhard
    • 2
  1. 1.Department of Chemical EngineeringUniversity of CaliforniaBerkeleyUSA
  2. 2.Science CenterNorth American RockwellThousand OaksUSA

Personalised recommendations