The Swelling of Nonuniformly Crosslinked Polymers in Solvents

  • Z. Rigbi

Summary

The mechanics of swelling of a heterogeneously crosslinked polymer is considered by means of a model consisting of a spherical core of a highly crosslinked material within a shell of a lower degree of crosslinking. Use is made of the equations relating the stresses developed in each of the parts with the relevant extension ratios and the strain energy function, in order to determine the stress distributions. The dependence of the strain energy function on the first and third invariants of the extension ratios is discussed and derived for a swollen, crosslinked elastomer.

Keywords

Natural Rubber Crosslink Density Strain Energy Function Alkyd Resin Extension Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    H.K. Meyer, Z. Phys. Chem., B44, 383 (1939).Google Scholar
  2. 2.
    P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, 1953.Google Scholar
  3. 3.
    P.J. Flory, J. Amer. Chem. Soc., 63, 3097 (1941).Google Scholar
  4. 4.
    W.H. Stockmayer, J. Chem. Phys., 12, 125 (1944).CrossRefGoogle Scholar
  5. 5.
    R.E. Cuthrell, J. Appt. Polym. Sci., 12. 1263 (1968).CrossRefGoogle Scholar
  6. 6.
    K. Dusek and W. Prins, Adv. Polym. Sci., 6, 1 (1969).CrossRefGoogle Scholar
  7. 7.
    S.H. Pinner, Plastics, 25, 35 (1960).Google Scholar
  8. 8.
    R.S. Stein, Pozym. Letters, 7, 657 (1969).CrossRefGoogle Scholar
  9. 9.
    Z. Rigbi, Int. J. Engng. Sci., 7, 1163 (1969).CrossRefGoogle Scholar
  10. 10.
    Z. Rigbi, paper read at Int. Rubber Conf., Paris, June 1970.Google Scholar
  11. 11.
    L.R.G. Treloar, private communication dated September 30, 1968.Google Scholar
  12. 12.
    P.J. Flory, private communication dated August 27, 1969.Google Scholar
  13. 13.
    S. Gumbrell, L. Mullins and R.S. Rivlin, Trans. Faraday Soc., 48, 200 (1952).CrossRefGoogle Scholar
  14. 14.
    A. Ciferri and P.J. Flory, J. AppZ. Phys., 30, 1498 (1969).CrossRefGoogle Scholar
  15. 15.
    G. Gee, J. Chem. Soc., p. 280, (1947).Google Scholar
  16. 16.
    B.E. Eichinger and P.J. Flory, Trans. Faraday Soc.,64. 2035 (1968).CrossRefGoogle Scholar
  17. 17.
    H. Tompa, C.R. II Reunion Chem. Phys. (Paris) 1962, p. 163.Google Scholar
  18. 18.
    A.C. Eringen, Non-Linear Theory of Continuous Media, McGraw-Hill, 1962.Google Scholar
  19. 19.
    L.J. Hart-Smith and J.D.C. Crisp, Int. J. Engng. Sci., 5, 1 (1967).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • Z. Rigbi
    • 1
  1. 1.Department of MechanicsTechnion — Israel Institute of TechnologyHaifaIsrael

Personalised recommendations