Optical Pulse Compression Based on Enhanced Frequency Chirping

  • D. Grischkowsky
  • A. C. Balant
Part of the NATO ASI Series book series (NSSB)


Through numerical simulations, we show that, under relatively general conditions, passage of an intense picosecond pulse through a single-mode optical fiber can cause the pulse to become strongly frequency broadened with a positive chirp (linear frequency sweep) describing essentially all of the energy of the output pulse. Also, because the optical fiber supports only a single transverse mode, the entire output beam profile has the same frequency modulation. These two features allow for unprecedented optical pulse compression.


Pulse Shape Optical Pulse Output Pulse Pulse Compression Electric Field Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, Bell.Syst.Tech.J., 39: 745 (1960).CrossRefGoogle Scholar
  2. 2.
    E. B. Treacy, Phys.Lett., 28A: 34 (1968).CrossRefGoogle Scholar
  3. 3.
    R. A. Fisher, P. L. Kelley, and T. K. Gustafson, Appl.Phys.Lett., 14: 140 (1969).CrossRefGoogle Scholar
  4. 4.
    A. Laubereau, Phys.Lett., 29A: 539 (1969).CrossRefGoogle Scholar
  5. 5.
    D. Grischkowsky, Appl.Phys.Lett., 25: 566 (1974).CrossRefGoogle Scholar
  6. 6.
    R. A. Fisher and W. K. Bischel, J.Appl.Phys., 46: 4921 (1975).CrossRefGoogle Scholar
  7. 7.
    R. H. Lehmberg and J. M. McMahon, Appl.Phys.Lett., 28:204 (1976); R. H. Lehmberg, J. R.intjes, and R. C. Eckardt, Opt.Commun., 22: 95 (1977).Google Scholar
  8. 8.
    J. K. Wigmore and D. Grischkowsky, IEEE J.Quantum Electron QE-14:310 (1978). This paper contains an extensive listing of the pulse compression literature.Google Scholar
  9. 9.
    A. Hasegawa and F. Tappert, Appl.Phys.Lett., 23: 142 (1973).CrossRefGoogle Scholar
  10. 10.
    L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys.Rev.Lett., 45: 1095 (1980).CrossRefGoogle Scholar
  11. 11.
    H. Nakatsuka, D. Grischkowsky, and A. C. Balant, Phys.Rev.Lett., 47: 910 (1981).CrossRefGoogle Scholar
  12. 12.
    D. Marcuse, Appl.Opt., 19: 1653 (1980).CrossRefGoogle Scholar
  13. 13.
    R. H. Stolen and C. Lin, Phys.Rev., A17: 1448 (1978).CrossRefGoogle Scholar
  14. 14.
    For a Gaussian pulse our Z ti Zshock/3 of Reference 6.Google Scholar
  15. 15.
    C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, Appl.Phys.Lett., 40: 761 (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • D. Grischkowsky
    • 1
  • A. C. Balant
    • 1
  1. 1.IBM Thomas J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations