Recompression of Optical Pulses Broadened by Passage Through Optical Fibers

  • Hiroki Nakatsuka
  • D. Grischkowsky
Part of the NATO ASI Series book series (NSSB)


A new technique for achieving distortion-free pulse propagation through single-mode optical fibers is demonstrated. Mode-locked dye-laser pulses with 3.3 psec pulse widths and a wavelength of 5878Å were propagated through a 325-m single-mode optical fiber and emerged with 13-psec pulse widths. These output pulses were recompressed to their original 3.3-psec pulse widths by passage through a 50-cm near-resonant atomic sodium-vapor delay line.


Optical Fiber Pulse Width Delay Line Optical Pulse Output Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Kawana et al., Pulse broadening in long-span single-mode fibers around a material-dispersion-free wave-length, Opt.Lett., 2: 106–108 (1978).CrossRefGoogle Scholar
  2. 2.
    D. M. Bloom et al., Direct demonstration of distortionless picosecond-pulse propagation in kilometer-length optical fibers, Opt.Lett., 4: 297–299 (1979).CrossRefGoogle Scholar
  3. 3.
    D. Grischkowsky, Optical pulse compression, Appl.Phys.Lett., 25: 566–568 (1974).CrossRefGoogle Scholar
  4. 4.
    J. E. Bjorkholm, E. H. Turner, and D. B. Pearson, Conversion of c.w. light into a train of subnanosecond pulses using frequency modulation and the dispersion of a near-resonant atomic vapor, Appl.Phys.Iett., 26: 564–566 (1975).Google Scholar
  5. 5.
    J. K. Wigmore and D. Grischkowsky, Temporal compression of light, IEEE J.Quantum Electron QE-14: 310–315 (1978).Google Scholar
  6. 6.
    J. R. Klauder et al., The theory and design of chirp radars, Bell Syst.Tech.J., 39: 745–808 (1960).CrossRefGoogle Scholar
  7. 7.
    J. A. Giordamine, M. A. Duguay, and J. W. Hansen, Compression of optical pulses, IEEE J.Quantum Electron QE-4: 252–255 (1968).Google Scholar
  8. 8.
    E. B. Treacy, Compression of picosecond light pulses, Phys.Lett., 28: 34–35 (1968).CrossRefGoogle Scholar
  9. 9.
    M. A. Duguay and J. W. Hansen, Compression of pulses from a mode-locked He-Ne laser, Appl.Phys.Lett., 14: 14–15 (1969).CrossRefGoogle Scholar
  10. 10.
    T. Suzuki and T. Fukumoto, Use of chirp pulses to improve the pulse transmission characteristics in a dielectric optical waveguide, Electron.Commun.Jpn., 59-C: 117–125 (1976).Google Scholar
  11. 11.
    J. V. Wright and B. P. Nelson, Pulse compression in optical fibers, Electron.Lett., 13: 361–363 (1977).CrossRefGoogle Scholar
  12. 12.
    R. H. Stolen and C. Lin, Self-phase-modulation in silica optical fibers, Phys.Rev., A17: 1448–1453 (1978).CrossRefGoogle Scholar
  13. 13.
    E. P. Ippen, D. J. Eilenberger, and R. W. Dixon, Picosecond pulse generation by passive mode-locking of diode lasers, Appl.Phys.Lett., 37: 267–269 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Hiroki Nakatsuka
    • 1
  • D. Grischkowsky
    • 1
  1. 1.IBM Thomas J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations