Skip to main content

Temporal Compression of Light

  • Chapter
Physics of New Laser Sources

Part of the book series: NATO ASI Series ((NSSB))

  • 183 Accesses

Abstract

The 5890 Å output from a CW dye laser was converted into a train of 0.5 ns pulses by frequency modulation and passage through a near-resonant atomic vapor delay line of Na. The theory of the process is discussed in both the time and frequency domains. Using a modulation index of 120 at a frequency of 17.8 MHz, we obtained values for the temporal compression ratio and intensity enhancement of 112 and 14, easily the largest that have been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, The theory and design of chirp radars, Bell.Syst.Tech.J., 39: 745–808 (1960).

    Article  Google Scholar 

  2. F. Gires and P. Tournois, Interférométre utilisable pour la compression d’impulsions lumineuses moduleés en frequence, Compt.Rend.Acad.Sci.(Paris), 258: 6112–6115 (1964).

    Google Scholar 

  3. J. A. Giordmaine, M. A. Duguay, and J. W. Hansen, Compression of optical pulses, IEEE J.Quantum Electron, QE-4: 252–255 (1968).

    Google Scholar 

  4. E. B. Treacy, Compression of picosecond light pulses, Phys.Lett., 28A: 34–35 (1968).

    Article  Google Scholar 

  5. M. A. Duguay and J. W. Hansen, Compression of pulses from a mode-locked He-Ne laser, Appl.Phys.Lett., 14: 14–15 (1969).

    Article  Google Scholar 

  6. R. A. Fisher, P. L. Kelley, and T. K. Gustafson, Subpicosecond pulse generation using the optical Kerr effect, Appl.Phys.Lett., 14: 140–143 (1969).

    Article  Google Scholar 

  7. A. Laubereau, External frequency modulation and compression of picosecond pulses, Phys.Lett., 29A: 539–540 (1969).

    Article  Google Scholar 

  8. E. B. Treacy, Optical pulse compression with diffraction gratings, IEEE J.Quantum Electron, QE-5: 454–458 (1969).

    Google Scholar 

  9. A. Laubereau and D. von der Linde, Frequenzmodulation and Kompression ultrakurzer Lichtimpulse, Z.Naturforsch, 25A: 1626–1642 (1970).

    Google Scholar 

  10. B. Ya. Zel’dovich and I. I. Sobel’man, Possibility of shortening light pulses in alkali-metal vapor, ZhETF Pis’ma Red, 13:182–185 (1971); JETP Lett., 13: 129–131 (1971).

    Google Scholar 

  11. R. A. Fisher and W. Bischel, The role of linear dispersion in plane-wave self-phase modulation, Appl.Phys.Lett., 23: 661–663 (1973).

    Article  Google Scholar 

  12. Pulse compression for more efficient operation of solid-state laser amplifier chains, Appl.Phys.Lett., 24: 468–470 (1974).

    Article  Google Scholar 

  13. D. Grischkowsky, Compression of low-intensity, phase modulated light pulses, IEEE J.Quantum Electron, QE-10: 723 (1974).

    Google Scholar 

  14. Optical pulse compression, Appl.Phys.Lett., 25: 566–568 (1974).

    Article  Google Scholar 

  15. J. E. Bjorkholm, E. H. Turner, and D. B. Pearson, Conversion of c.w. light into a train of subnanosecond pulses using frequency modulation and the dispersion of a near-resonant atomic vapor, Appl.Phys.Lett., 26: 564–566 (1975).

    Article  Google Scholar 

  16. R. H. Lehmberg and J. M. McMahon, Compression of 100 psec laser pulses, Appl.Phys.Lett., 28: 204–206 (1976).

    Article  Google Scholar 

  17. D. Grischkowsky, Adiabatic following and slow optical pulse propagation in rubidium vapor, Phys.Rev.A, 7: 2096–2102 (1973).

    Article  Google Scholar 

  18. M. M. T. Loy, A dispersive modulator, Appl.Phys.Lett., 26: 99–101 (1975).

    Article  Google Scholar 

  19. M. M. T. Loy, The dispersive modulator–A new concept in optical pulse compression, IEEE J.Quantum Electron, QE-13: 388–392 (1977).

    Google Scholar 

  20. D. Grischkowsky and M. M. T. Loy, Theory of the dispersive modulator, Appl.Phys.Lett., 26: 156–158 (1975).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wigmore, J.K., Grischkowsky, D.R. (1985). Temporal Compression of Light. In: Abraham, N.B., Arecchi, F.T., Mooradian, A., Sona, A. (eds) Physics of New Laser Sources. NATO ASI Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6187-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6187-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6189-4

  • Online ISBN: 978-1-4757-6187-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics