Wavelength Conversion by Stimulated Raman Scattering

  • David A. Rockwell
  • Hans W. Bruesselbach
Part of the NATO ASI Series book series (NSSB)


In considering a broad subject area such as the physics of new laser sources, one must necessarily review recent progress in the particular area of wavelength conversion via nonlinear optical processes. From a fundamental perspective, the field of nonlinear optics offers researchers a unique opportunity to study basic optical properties of materials in the presence of intense electromagnetic radiation in which the electric field strength might be comparable to that of the field binding the valence electrons to an atom. From an applications perspective, nonlinear optical devices offer a practical method to generate coherent radiation at wavelengths significantly removed from those of existing laser sources, thereby obviating the necessity for developing a fundamentally new laser source in every wavelength range that might be of interest. This article reviews the physics and applications of the specific nonlinear process of stimulated Raman scattering. Recent research shows that Raman devices offer great promise for producing multiple wavelengths from a single suitable pump laser, with projected average output powers well in excess of 10 watts. With a realistic energy conversion efficiency z50 percent, Raman devices are becoming established as a major factor in the physics of new laser sources.


Gaussian Beam Pump Beam Pump Laser Stimulate Raman Scattering Wavelength Conversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, for example, G. Herzberg, Molecular Spectra and Molecular Structure Vol. I. Spectra of Diatomic Molecules (Van Nostrand Reinhold, New York, 1950 ).Google Scholar
  2. 2.
    E.J. Woodbury and W.K. Ng, Proc. IRE 50, 2347 (1962).CrossRefGoogle Scholar
  3. 3.
    R.W. Hellwarth, Phys. Rev. 130 1850 (1963).Google Scholar
  4. 4.
    For a quantum mechanical description of stimulated Raman scattering see, for example, D. Marcuse, Principles of Quantum Electronics ( Academic, New York, 1980 ).Google Scholar
  5. 5.
    A. Yariv, Quantum Electronics ( Wiley, New York, 1975 ), p. 484.Google Scholar
  6. 6.
    F. Zernike and J.E. Midwinter, Applied Nonlinear Optics ( Wiley, New York, 1973 ), p. 4.Google Scholar
  7. 7.
    H.W. Bruesselbach, D.A. Rockwell, S.M. Wandzura, and G.C. Valley, “Efficient Wavelength Conversion with a Backward-Stokes Raman Laser,” presented at OSA meeting, New Orleans, Oct. 1983.Google Scholar
  8. 8.
    A. Weber, ed. Raman Spectroscopy of Gases and Liquids ( Springer-Verlag, New York, 1979 ).Google Scholar
  9. 9.
    A.Z. Grasyuk, Sov. J. Quant. Electron. 4, 269 (1974).Google Scholar
  10. 10.
    A.Z. Grasiuk and I.G. Zubarev, Appl. Phys. 17, 211 (1978).CrossRefGoogle Scholar
  11. 11.
    N.F. Andreev, V.I. Bespalov, A.M. Kiselev, and G.A. Pasmanik, Sov. J. Quant. Electron. 9, 585 (1979).CrossRefGoogle Scholar
  12. 12.
    G.C. Valley, IEEE J. Quant. Electron. QE-18 1370 (1982).Google Scholar
  13. D.G. Bruns, H.W. Bruesselbach, and D.A. Rockwell, Proc Int. Conf. on Lasers’8O 406 (1980).Google Scholar
  14. 14.
    H.W. Yates and J.H. Taylor, “Infrared Transmission of the Atmosphere,” NRL Report 5453, U.S. Naval Research Laboratory, Washington, D.C. (1960).Google Scholar
  15. 15.
    Judson Infrared, Inc., Ft. Washington, PA, Series J-16 Germanium photodiode.Google Scholar
  16. 16.
    W.R. Trutna and R.L. Byer, Appl. Opt. 19, 301 (1980).CrossRefGoogle Scholar
  17. 17.
    J. Paisner and S. Hargrove, “A Tunable Laser System for the Ultraviolet, Visible, and Infrared Regions,” Energy Technology Review, Lawrence Livermore Laboratories, UCRL Report 52000-79–3, March 1979.Google Scholar
  18. 18.
    Quanta Ray, Mountain View, CA 94043, now makes a dye laser pumped Raman laser tunable to 190 nm using anti-Stokes Raman shifts, but at a generally lower efficiency than the Stokes shifted wavelengths.Google Scholar
  19. 19.
    J.G. Meadors and M.A. Poirier, IEEE J. Quant. Electron. QE-8 427 (1972).Google Scholar
  20. 20.
    A.J. Glass, IEEE J. Quant. Electron. QE-3 516 (1967).Google Scholar
  21. 21.
    N. Djeu and R. Burnham, Appl. Phys. Lett. 30 473 (1977).Google Scholar
  22. 22.
    P. Rabinowitz, A. Stein, R. Brickman, and A. Kaldor, Appl. Phys. Lett. 35, 739 (1979).CrossRefGoogle Scholar
  23. 23.
    E. Wild and M. Maier, J. Appl. Phys. 51, 3078 (1980).CrossRefGoogle Scholar
  24. D.G. Bruns, H.W. Bruesselbach, H.D. Stovall, and D.A. Rockwell, IEEE J. Quant. Electron. QE-18 1246 (1982).Google Scholar
  25. 25.
    J.M. Manley and H.E. Rowe, Proc. IRE 47, 2115 (1959).Google Scholar
  26. 26.
    W.H. Culver and E.J. Seppi, J. Appl. Phys. 35 3421 (1964).Google Scholar
  27. 27.
    A. Yariv, ibid p.476.Google Scholar
  28. 28.
    A. Yariv, ibid p.111.Google Scholar
  29. 29.
    W.R. Fenner, H.A. Hyatt, J.M. Ke11man, and S.P.S. Porto, J. Opt. Soc. Am. 63, 73 (1973).CrossRefGoogle Scholar
  30. 30.
    P.V. Avizonis, K.C. Jungling, A.H. Guenther, and R.M. Heimlich, J. Appl. Phys. 39, 1752 (1968).CrossRefGoogle Scholar
  31. 31.
    H. Komine, E.A. Stappaerts, S.J. Brosnan, and J.B. West, Appl. Phys. Lett. 40, 551 (1982).CrossRefGoogle Scholar
  32. 32.
    S.F. Fulghum, D.W. Trainor, C. Duzy, and H.A. Hyman, Topical Meeting on Excimer Lasers ( Incline Village, NE, 1983 ).Google Scholar
  33. 33.
    R.S.F. Chang and N. Djeu, Opt. Lett. 8, 139 (1983).CrossRefGoogle Scholar
  34. 34.
    H. Komine, Scaling Studies of Efficient Raman Converters Technical Report AD-110159, (1981) p.16.Google Scholar
  35. 35.
    Y.R. Shen and N. Bloembergen, Phys. Rev. 137 A1787 (1965).Google Scholar
  36. 36.
    M. Sparks, Phys. Rev. Lett. 32, 450 (1974).CrossRefGoogle Scholar
  37. 37.
    J.H. Newton and G.M. Schindler, Opt. Lett. 6, 125 (1981).CrossRefGoogle Scholar
  38. 38.
    J.N. Holliday, Opt. Lett. 8, 12 (1983).CrossRefGoogle Scholar
  39. 39.
    W. Seka, S.D. Jacobs, J.E. Rizzo, R. Boni, and R.S. Craxton, Opt. Comm. 34, 469 (1980).CrossRefGoogle Scholar
  40. 40.
    R.S. Craxton, Opt. Comm. 34, 474 (1980).CrossRefGoogle Scholar
  41. 41.
    D. von der Lind, M. Maier, and W. Kaiser, Phys. Rev. 178 11 (1969).Google Scholar
  42. 42.
    E.E. Hagenlocker and W.G. Rado, Appl. Phys. Lett. 7, 236 (1965).CrossRefGoogle Scholar
  43. 43.
    E.E. Hagenlocker, R.W. Minck, and W.G. Rado, Phys. Rev. 154 226 (1967).Google Scholar
  44. 44.
    N. Bloembergen, G.G. Bret, P. Lallemand, A. Pine, and P. Simova, IEEE J. Quant. Elect. QE-3 197 (1967).Google Scholar
  45. 45.
    N. Bloembergen, Am. J. Phys. 35, 989 (1967).CrossRefGoogle Scholar
  46. 46.
    P. Rabinowitz, A. Stein, L.R. Brickman, and A. Kaldor, Opt. Lett. 3, 147 (1978).CrossRefGoogle Scholar
  47. 47.
    W.R. Trutna, Y.K. Park, and R.L. Byer, IEEE J. Quant. Elect. QE-15 648 (1979).Google Scholar
  48. 48.
    W.K. Bischel, Laser Focus (October, 1983), p.156.Google Scholar
  49. 49.
    E.A. Stappaerts, W.H. Long, Jr., and H. Komine, Opt. Lett. 5, 4 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • David A. Rockwell
    • 1
  • Hans W. Bruesselbach
    • 1
  1. 1.Hughes Research LaboratoriesMalibuUSA

Personalised recommendations