Skip to main content

Wavelength Conversion by Stimulated Raman Scattering

  • Chapter
Physics of New Laser Sources

Part of the book series: NATO ASI Series ((NSSB))

  • 178 Accesses

Abstract

In considering a broad subject area such as the physics of new laser sources, one must necessarily review recent progress in the particular area of wavelength conversion via nonlinear optical processes. From a fundamental perspective, the field of nonlinear optics offers researchers a unique opportunity to study basic optical properties of materials in the presence of intense electromagnetic radiation in which the electric field strength might be comparable to that of the field binding the valence electrons to an atom. From an applications perspective, nonlinear optical devices offer a practical method to generate coherent radiation at wavelengths significantly removed from those of existing laser sources, thereby obviating the necessity for developing a fundamentally new laser source in every wavelength range that might be of interest. This article reviews the physics and applications of the specific nonlinear process of stimulated Raman scattering. Recent research shows that Raman devices offer great promise for producing multiple wavelengths from a single suitable pump laser, with projected average output powers well in excess of 10 watts. With a realistic energy conversion efficiency z50 percent, Raman devices are becoming established as a major factor in the physics of new laser sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for example, G. Herzberg, Molecular Spectra and Molecular Structure Vol. I. Spectra of Diatomic Molecules (Van Nostrand Reinhold, New York, 1950 ).

    Google Scholar 

  2. E.J. Woodbury and W.K. Ng, Proc. IRE 50, 2347 (1962).

    Article  Google Scholar 

  3. R.W. Hellwarth, Phys. Rev. 130 1850 (1963).

    Google Scholar 

  4. For a quantum mechanical description of stimulated Raman scattering see, for example, D. Marcuse, Principles of Quantum Electronics ( Academic, New York, 1980 ).

    Google Scholar 

  5. A. Yariv, Quantum Electronics ( Wiley, New York, 1975 ), p. 484.

    Google Scholar 

  6. F. Zernike and J.E. Midwinter, Applied Nonlinear Optics ( Wiley, New York, 1973 ), p. 4.

    Google Scholar 

  7. H.W. Bruesselbach, D.A. Rockwell, S.M. Wandzura, and G.C. Valley, “Efficient Wavelength Conversion with a Backward-Stokes Raman Laser,” presented at OSA meeting, New Orleans, Oct. 1983.

    Google Scholar 

  8. A. Weber, ed. Raman Spectroscopy of Gases and Liquids ( Springer-Verlag, New York, 1979 ).

    Google Scholar 

  9. A.Z. Grasyuk, Sov. J. Quant. Electron. 4, 269 (1974).

    Google Scholar 

  10. A.Z. Grasiuk and I.G. Zubarev, Appl. Phys. 17, 211 (1978).

    Article  Google Scholar 

  11. N.F. Andreev, V.I. Bespalov, A.M. Kiselev, and G.A. Pasmanik, Sov. J. Quant. Electron. 9, 585 (1979).

    Article  Google Scholar 

  12. G.C. Valley, IEEE J. Quant. Electron. QE-18 1370 (1982).

    Google Scholar 

  13. D.G. Bruns, H.W. Bruesselbach, and D.A. Rockwell, Proc Int. Conf. on Lasers’8O 406 (1980).

    Google Scholar 

  14. H.W. Yates and J.H. Taylor, “Infrared Transmission of the Atmosphere,” NRL Report 5453, U.S. Naval Research Laboratory, Washington, D.C. (1960).

    Google Scholar 

  15. Judson Infrared, Inc., Ft. Washington, PA, Series J-16 Germanium photodiode.

    Google Scholar 

  16. W.R. Trutna and R.L. Byer, Appl. Opt. 19, 301 (1980).

    Article  Google Scholar 

  17. J. Paisner and S. Hargrove, “A Tunable Laser System for the Ultraviolet, Visible, and Infrared Regions,” Energy Technology Review, Lawrence Livermore Laboratories, UCRL Report 52000-79–3, March 1979.

    Google Scholar 

  18. Quanta Ray, Mountain View, CA 94043, now makes a dye laser pumped Raman laser tunable to 190 nm using anti-Stokes Raman shifts, but at a generally lower efficiency than the Stokes shifted wavelengths.

    Google Scholar 

  19. J.G. Meadors and M.A. Poirier, IEEE J. Quant. Electron. QE-8 427 (1972).

    Google Scholar 

  20. A.J. Glass, IEEE J. Quant. Electron. QE-3 516 (1967).

    Google Scholar 

  21. N. Djeu and R. Burnham, Appl. Phys. Lett. 30 473 (1977).

    Google Scholar 

  22. P. Rabinowitz, A. Stein, R. Brickman, and A. Kaldor, Appl. Phys. Lett. 35, 739 (1979).

    Article  Google Scholar 

  23. E. Wild and M. Maier, J. Appl. Phys. 51, 3078 (1980).

    Article  Google Scholar 

  24. D.G. Bruns, H.W. Bruesselbach, H.D. Stovall, and D.A. Rockwell, IEEE J. Quant. Electron. QE-18 1246 (1982).

    Google Scholar 

  25. J.M. Manley and H.E. Rowe, Proc. IRE 47, 2115 (1959).

    Google Scholar 

  26. W.H. Culver and E.J. Seppi, J. Appl. Phys. 35 3421 (1964).

    Google Scholar 

  27. A. Yariv, ibid p.476.

    Google Scholar 

  28. A. Yariv, ibid p.111.

    Google Scholar 

  29. W.R. Fenner, H.A. Hyatt, J.M. Ke11man, and S.P.S. Porto, J. Opt. Soc. Am. 63, 73 (1973).

    Article  Google Scholar 

  30. P.V. Avizonis, K.C. Jungling, A.H. Guenther, and R.M. Heimlich, J. Appl. Phys. 39, 1752 (1968).

    Article  Google Scholar 

  31. H. Komine, E.A. Stappaerts, S.J. Brosnan, and J.B. West, Appl. Phys. Lett. 40, 551 (1982).

    Article  Google Scholar 

  32. S.F. Fulghum, D.W. Trainor, C. Duzy, and H.A. Hyman, Topical Meeting on Excimer Lasers ( Incline Village, NE, 1983 ).

    Google Scholar 

  33. R.S.F. Chang and N. Djeu, Opt. Lett. 8, 139 (1983).

    Article  Google Scholar 

  34. H. Komine, Scaling Studies of Efficient Raman Converters Technical Report AD-110159, (1981) p.16.

    Google Scholar 

  35. Y.R. Shen and N. Bloembergen, Phys. Rev. 137 A1787 (1965).

    Google Scholar 

  36. M. Sparks, Phys. Rev. Lett. 32, 450 (1974).

    Article  Google Scholar 

  37. J.H. Newton and G.M. Schindler, Opt. Lett. 6, 125 (1981).

    Article  Google Scholar 

  38. J.N. Holliday, Opt. Lett. 8, 12 (1983).

    Article  Google Scholar 

  39. W. Seka, S.D. Jacobs, J.E. Rizzo, R. Boni, and R.S. Craxton, Opt. Comm. 34, 469 (1980).

    Article  Google Scholar 

  40. R.S. Craxton, Opt. Comm. 34, 474 (1980).

    Article  Google Scholar 

  41. D. von der Lind, M. Maier, and W. Kaiser, Phys. Rev. 178 11 (1969).

    Google Scholar 

  42. E.E. Hagenlocker and W.G. Rado, Appl. Phys. Lett. 7, 236 (1965).

    Article  Google Scholar 

  43. E.E. Hagenlocker, R.W. Minck, and W.G. Rado, Phys. Rev. 154 226 (1967).

    Google Scholar 

  44. N. Bloembergen, G.G. Bret, P. Lallemand, A. Pine, and P. Simova, IEEE J. Quant. Elect. QE-3 197 (1967).

    Google Scholar 

  45. N. Bloembergen, Am. J. Phys. 35, 989 (1967).

    Article  Google Scholar 

  46. P. Rabinowitz, A. Stein, L.R. Brickman, and A. Kaldor, Opt. Lett. 3, 147 (1978).

    Article  Google Scholar 

  47. W.R. Trutna, Y.K. Park, and R.L. Byer, IEEE J. Quant. Elect. QE-15 648 (1979).

    Google Scholar 

  48. W.K. Bischel, Laser Focus (October, 1983), p.156.

    Google Scholar 

  49. E.A. Stappaerts, W.H. Long, Jr., and H. Komine, Opt. Lett. 5, 4 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rockwell, D.A., Bruesselbach, H.W. (1985). Wavelength Conversion by Stimulated Raman Scattering. In: Abraham, N.B., Arecchi, F.T., Mooradian, A., Sona, A. (eds) Physics of New Laser Sources. NATO ASI Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6187-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6187-0_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6189-4

  • Online ISBN: 978-1-4757-6187-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics