Excimer Lasers : Practical Excimer Laser Sources

  • Pio Burlamacchi
Part of the NATO ASI Series book series (NSSB)


Since their first demonstration1 in 1975 rare-gas-halide excimer lasers have been developed with amazing rapidity when compared with the development of previous systems. This new generation of lasers have been indeed described as an ultraviolet revolution and a new gas laser workhorse. The basic similarity in design to CO2 pulsed TEA lasers played a fundamental role in this development.


Excimer Laser High Repetition Rate XeCl Laser Marx Generator Unstable Resonator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.K.Searles, and G.A.Hart, Stimulated Emission at 281.8 nm from XeBr, Appl.Phys.Lett. 27: 243 (1975)CrossRefGoogle Scholar
  2. 2.
    J.Goldhar, W.R.Rapapart, and J.R.Murray, An Injection-Locked Unstable Resonator Rare Gas Halide Discharge Laser of Narrow Bandwidth and High Spatial Quality, IEEE J.Quantum Electron. QE16: 235 (1980)Google Scholar
  3. 3.
    G.Eden, R.Burnham, L.F.Champagne, T.Donohue, and N.Djeu, Visible and Ultraviolet Lasers, IEEE Spectrum, p. 50 (Apr.1979)Google Scholar
  4. 4.
    V.S.Letokhov, Laser Induced Chemical Processes, Phy.Today, p. 34 (Nov.1980)Google Scholar
  5. 5.
    O.Uchino, M.Maeda, M.Hirono, Application of Excimer Lasers to Laser-Radar Observations of the Upper Atmosphere, IEEE J. Quantum Electron. QE15: 1094 (1979)Google Scholar
  6. 6.
    T. J. Mc Kee, Excimer Laser. An Ultraviolet Revolution, Phy. Can. 36: 41 (1980)Google Scholar
  7. 7.
    T. J. Mc Kee, and J. Nilson, Excimer Applications, Laser Focus p. 51 (June 1982)Google Scholar
  8. 8.
    J. E. Velazco, and D. W. Setzer, Quenching Studies of Xe(3p2) metastable atoms, IEEE J. Quantum Electron. QE11: 708 (1975)Google Scholar
  9. 9.
    R. Burnham, H. W. Harris, and N. Djeu, Xenon Fluoride Laser Excitation by Transverse Electric Discharge, App. Phys. Lett. 28: 86 (1976)Google Scholar
  10. 10.
    J. A. Mangano, and H. J. Jacob, E-Beam Controlled Discharge Pumping of KrF Laser, App. Phys. Lett. 27: 495 (1975)Google Scholar
  11. 11.
    J. D. Daugherty, J. A. Mangano, and J. H. Jacob, Attachment Dominated Electron Beam Ionized Discharges, App. Phys. Lett. 28: 581 (1976)Google Scholar
  12. 12.
    W. L. Nighan,“Principles of Laser Plasmas”, G. Bakefi ed., chap. 7, p. 257, Wiley New York, (1976)Google Scholar
  13. 13.
    C. K. Rhodes Ed., Excimer Lasers, Topics App. Phy. 30, Springer (1979)Google Scholar
  14. 14.
    M. H. R. Hutchinson, Excimers and Excimer Lasers, App. Phys. 21: 95 (1980)Google Scholar
  15. 15.
    M. Rokni, and J. H. Jacob, Rare Gas Halides Lasers, in: “Applied Atomic Collision Physics” vol. 3, Academic Press (1982)Google Scholar
  16. 16.
    J. Goldhar, K. S. Jancaitis, and J. R. Murray, 850 J, 1050 ns narrow-band Krypton-Fluoride Laser, CLEO 84 Technical Digest ThB2 p. 136 (1984)Google Scholar
  17. 17.
    S. Singer, Recent Advances in KrF Systems Technology, CLEO 84 Technical Digest THB1, p. 136 (1984)Google Scholar
  18. 18.
    J. C. Hsia, A Model for UV Preionization in Electric-DischargePumped XeF and KrF Lasers, App. Phys. Lett. 30: 101 (1977)Google Scholar
  19. 19.
    C. B. Edwards, M. H. R. Hitchinson, D. J. Bradley, and M. D. Hutchinson, Repetitive Vacuum Ultraviolet Xenon Excimer Laser, Rev. Sci. Instr. 50: 1201 (1979)CrossRefGoogle Scholar
  20. 20.
    E. Fiorentino, T. Letardi, A. Marino, E. Sabia, M. Vannini, Electron Beam Sustained Discharge XeCl Laser. (To be published)Google Scholar
  21. 21.
    J. H. Jacob, Diffusion of Fast Electrons in the Presence of a Magnetic Field, App. Phys. Lett. 31: 252 (1977)Google Scholar
  22. 22.
    H. J. Seguin, and J. Tulip, Photoionization and Photosustained Lasers, App. Phys. Lett. 20: 414 (1972)Google Scholar
  23. 23.
    H. J. Seguin, J. Tulip, and D. Mc Keen, Ultraviolet Photoionization in TEA Lasers, IEEE J. Quantum Elect. QE10: 331 (1974)Google Scholar
  24. 24.
    R. C. Sze, and P. B. Scott, 1/4-J Discharge Pumped KrF Laser, Rev. Sci. Instr. 49: 772 (1978)CrossRefGoogle Scholar
  25. 25.
    R. C. Sze, and T. R. Loree, Experimental study of a KrF and ArF Discharge Laser, IEEE J. Quantum Electron. QE14: 944 (1978)Google Scholar
  26. 26.
    S. Sunida, K. Kunitamo, M. Kaburagi, M. Obara, and T. Tujioka, Effect of Preionization Uniformity on a KrF Laser, J. App. Phys. 52: 2682 (1981)CrossRefGoogle Scholar
  27. 27.
    S. Sumida, M. Obara, and T. Fujioka, X-Ray-Preionized High Pressure KrF Laser, App. Phys. Lett. 33: 913 (1978)Google Scholar
  28. 28.
    S. C. Lin, and J. I. Levotter, X-Ray Preionization of Electric Discharge Laser, App. Phys. Lett. 34: 505 (1979)Google Scholar
  29. 29.
    H. Shields, and A. J. Alcock, Short Pulse X-Ray Preionization of a High Pressure XeCl Gas Discharge Laser, Optics Comm. 42: 128 (1982)CrossRefGoogle Scholar
  30. 30.
    K. M. Dorikawa, M. Obara, and T. Fujioka, X-Ray Preionization of Rare-Gas-Halide Lasers, IEEE J. Quantum Electr. QE20: 198 (1984)Google Scholar
  31. 31.
    I. Smilanski, S. R. Byron, and T. R. Burkes, Electrical Excitation of an XeC1 Laser Using Magnetic Pulse Compression, App. Phys. Lett. 40 (7): 547 (1982)Google Scholar
  32. 32.
    R. R. Butcher, and T. S. Falhen, Magnetically Switched 150 W XeC1 Laser, CLEO 84 Technical Digest THP1, p. 202 (1984)Google Scholar
  33. 33.
    W. H. Lang Jr., M. J. Plummer, and E. A. Stappaarts, Efficient Discharge Pumping of an XeC1 Laser Using a High Voltage Pre-pulse, App. Phys. Lett. 43 ( 8): 735 (1983)Google Scholar
  34. 34.
    R. Buffa, P. Burlamacchi, M. Matera, H. F. Ranea Sandoval, and R. Salimbeni, High Repetition Rate Effects in XeC1 TEA Lasers, Optic. Comm. 40: 288 (1982)Google Scholar
  35. 35.
    R. S. Taylor, S. Watanabe, A. J. Alcock, K. E. Leopold, and P. B. Carkum, Operating Characteristics of a 5 J (5 J/liter) UV Preionized XeC1 Laser, IEEE J. Quantum Electron. QE17: Special Issue, Part. II, 82 (1981)Google Scholar
  36. 36.
    S. Watanabe, and A. Endoh, Wide Aperture Self Sustained Discharge KrF and XeC1 Lasers, App. Phys. Lett. 41: 799 (1982)Google Scholar
  37. 37.
    R. S. Taylor, P. B. Carkum, S. Watanabe, K. Leopold, and A. J. Alcock, Tune-Dependent Gain and Absorption in a 5 J UV Preionized XeCl Laser, IEEE J. Quantum. Electr. QE19: 416 (1983)Google Scholar
  38. 38.
    M. R. Osborn, M. H. R. Hutchinson, and P. W. Smith, Improvement in efficiency of X-Ray Preionized XeCl Lasers, CLEO 84 Technical Digest THP4, pag. 204 (1984)Google Scholar
  39. 39.
    R. S. Taylor, A. J. Alcock, and K. E. Leopold, Rail Gap Switches for High Output Energy Excimer Lasers, In: “Proc. 3rd IEEE Int. Pulsed Power Conference”, Albuquerque NM, p. 157 (1981)Google Scholar
  40. 40.
    W. Rogowski, Arch. Electrotech. 12: 1 (1923)CrossRefGoogle Scholar
  41. 41.
    T. Y. Chang, Improved Uniform Field Electrode Profiles for TEA Laser and High Voltage Applications, Rev. Sci. Instr. 44: 405 (1973)CrossRefGoogle Scholar
  42. 42.
    A. E. Stappaerts, A novel Design Method for Discharge Laser Electrode Profiles, App. Phys. Lett. 40 (12): 1018 (1982)Google Scholar
  43. 43.
    G. J. Ernst, Uniform Field Electrodes with Minimum Width, Opt. Comm. 49: 275 (1984)CrossRefGoogle Scholar
  44. 44.
    R. Tennant, Control of Contaminants in XeC1 Lasers, Laser Focus (Oct. 1981)Google Scholar
  45. 45.
    T. J. Mc Kee, J. Banic, A. Jares, and B. P. Stoicheff, IEEE J. Quantum Electron. QE15: 332 (1979)Google Scholar
  46. 46.
    R. Buffa, P. Burlamacchi, R. Salimbeni, and M. Matera, Efficient Spectral Narrowing of a XeC1 TEA Laser, J. Phys. D (App. Phys. ) 16: L125 (1983)CrossRefGoogle Scholar
  47. 47.
    D. B. Cohn and H. Komine, Long Pulse Excimer Laser Excited by Sequenced Discharges, IEEE J. Quantum Electron. QE19: 786 (1983)Google Scholar
  48. 48.
    S. Watanabe, M. Watanabe, and A. Endoh, Passive Mode Locking of a Long Pulse XeCl Laser, App. Phys. Lett. 43 (6): 533 (1983)Google Scholar
  49. 49.
    G. Reksten, T. Varghese, and W. Margulis, Active Mode Locking of a XeC1 Laser, App. Phys. Lett. 39 (2): 129 (1981)Google Scholar
  50. 50.
    I. V. Tomov, R. Fedosejevs, M. C. Richardson, W. J. Sarjeant, A. J. Alcock, andK. L. Lopold, Picosecond XeF Amplified Laser Pulses, App. Phys. Lett. 30: 146 (1977)Google Scholar
  51. 51.
    H. Egger, T. S. Luk, K. Boyer, D. F. Muller, H. Pummer, T. Srinivasan, C. K. Rhodes, Picosecond, Tinable ArF Excimer Laser Source, App. Phys. Lett. 41 (11): 1032 (1982)Google Scholar
  52. 52.
    H. L. Stower, and W. H. Steier, Locking of Laser Oscillations by Light Injection, App. Phys. Lett. 8: 91 (1966) and C. J. Buczek, R. J. Freiberg, and M. L. Skolnick, Laser Injection Locking, Proc. IEEE 16: 15411 (1973)Google Scholar
  53. 53.
    W. W. Chow, Theory of Line Narrowing and Frequency Selection in an Injection Locked Laser, IEEE J. Quantum Electron. QE19: 243 (1983)Google Scholar
  54. 54.
    I. J. Bigio, and M. Slatkine, Transform-Limited-Bandwidth Injection Locking of an XeF Laser with an Ar-Ion at 3511 A, Opt. Lett. 7: 19 (1982)CrossRefGoogle Scholar
  55. 55.
    O. L. Bourne, andA. J. Alcock, A High Power, Narrow Linewidth XeCl Oscillator, App. Phys. Lett. 42 (9): 777 (1983)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Pio Burlamacchi
    • 1
  1. 1.Dipartimento di EnergeticaUniversity of FlorenceFlorenceItaly

Personalised recommendations