Optically Pumped Far Infrared Lasers

  • F. Strumia
  • N. Iolia
  • A. Moretti
Part of the NATO ASI Series book series (NSSB)


The search for efficient and powerful sources of coherent radiation spanning the widest possible spectral range is a major task in the fields of Quantum electronics and Laser spectroscopy. Until the discovery in 1970 1 of the optically pumped Far Infrared (FIR) lasers, the submillimeter range of the spectrum had been almost barren due to the lack of radiation sources. Before 1970, the FIR portion of the electromagnetic spectrum was only very sparsely covered by molecular glow discharge lasers (HCN, DCN, H2O) and the list of available laser lines was rather poor2 Since 1970 more than two thousand optically pumped FIR laser lines throughout the 0.03 to 2 mm region were discovered, some providing hundreds of Kilowatts of milliwatts of continous power.


Pump Power Laser Line Vibrational State Pump Radiation Power Enhancement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.Y. Chang, T.J. Bridges, Opt. Commun. 1, 423 (1970)CrossRefGoogle Scholar
  2. 2.
    P.D. Coleman, IEEE J. Quant.Electron. QE 9, 130 (1973) G.W. Chantry, G. Duxbury, in “ Methods Exp. Phys”, vol. 3A, L. Marton ed., Academic Press, 1974 pagg. 302-394.Google Scholar
  3. 3.
    T.Y. Chang, “ Optical Pumping in gases” in Y.R. Shen “ Nonlinear Infrared Genration” Springer Verlag, Berlin, Heidelberg, New York, 1977, pagg. 215-272.Google Scholar
  4. 4.
    T.A. De Temple,”Pulsed optically pumped far infrared lasers in “Infrared and millimeter waves” vol 1, K.J. Button ed., Academic Press, New York, pagg.129-184 (1979)Google Scholar
  5. 5.
    J.O. Henningsen,”Molecular Spectroscopy by far infrared laser emission”,ibid., vol. 5, pagg. 29-129. (1982)Google Scholar
  6. 6.
    F. Strumia, M. Inguscio,” Stark Spectroscopy and frequency tuning in optically pumped far-infrared lasers” ibid.,vol.5, pagg. 130 - 214 (1982)Google Scholar
  7. 7.
    T.A. De Temple, E.J. Danielewicz, “ Continuous wave optically pumped lasers”, ibid., vol 7, pagg. 1 - 41 (1983)Google Scholar
  8. 8.
    K. Walzer, Optimization of optically pumped far-infrared lasers,ibid. vol.7, pagg. 119 - 163 (1983)Google Scholar
  9. 9.
    J.P. Picharruthu, Submillimeter lasers with electrical, chemical and incoherent optical excitation,ibid. vol.7, pagg. 165244 (1983)Google Scholar
  10. 10.
    K.J. Button, M. Inguscio, F. Strumia eds., Optically pumped far-infrared lasers, “Reviews of infrared and millimeter waves”, vol. 2, Plenum Press, New York (1984)Google Scholar
  11. 11.
    F. Strumia,N. Ioli, High power, tunable waveguide CO2 lasers, this book.Google Scholar
  12. 12.
    J.R. Tucker, IEEE Trans. Microw. Theory Tech., MTT-22 1117 (1974)Google Scholar
  13. 13.
    D.T. Hodges, J.R. Tucker, Appl.Phys.Lett. 27, 667 (1975)CrossRefGoogle Scholar
  14. 14.
    D.T. Hodges, Infr. Phys. 18, 375 (1978)CrossRefGoogle Scholar
  15. 15.
    T. Oka in “Advances in Atomic and Molecular Physics”, D. Bates, B. Bederson eds., vol. 9; Academic Press, New York (1973)Google Scholar
  16. 16.
    M. Inguscio, F. Strumia, K.M. Evenson, D.A. Jennings, D.A. Scalabrin; S.R. Stein, Opt. Lett. 4, 9 (1979)CrossRefGoogle Scholar
  17. 17.
    M. Inguscio, A. Moretti, F. Strumia, Opt. Commun. 30, 355 (1979)CrossRefGoogle Scholar
  18. 18.
    E.J. Danielewicz, C.O. Weiss, IEEE J. Quant. Electron. QE14 705 (1978)Google Scholar
  19. 19.
    K.Walzer, M. Tacke, IEEE J. Quant. Electron. QE16 255 (1980)Google Scholar
  20. 20.
    D.K. Mansfield, L.C. Johnson, R. Chouinard, Conf. Digest 8 Int. Conf. on Infr. Millim. Waves, Miami 1983, paper W5.4 IEEE cat. N° 83 CH 1917-4.Google Scholar
  21. 21.
    T.Y. Chang, C. Lin, J. Opt. Soc. Am. 66, 362 (1976)CrossRefGoogle Scholar
  22. 22.
    N.M. Lavandy, G.A. Koepf, Opt. Lett. 5, 336 (1980)CrossRefGoogle Scholar
  23. 23.
    N. Ioli, A. Moretti, G. Moruzzi, P. Roselli, F. Strumia, J. Mol. Spectr. 105, 284 (1984)Google Scholar
  24. 24.
    M. Inguscio, A. Moretti, F. Strumia, IEEE J. Quant. Electr. QE 16 955 (1980)Google Scholar
  25. 25.
    F. Strumia, J. de Physique-Colloque C7, 117 (1983)Google Scholar
  26. 26.
    M. Inguscio, N. Ioli, A. Moretti, G. Moruzzi, F. Strumia, Opt. Commun. 37, 211 (1981)CrossRefGoogle Scholar
  27. M. Inguscio, F. Strumia, J.O. Henningsen, in ref. 10Google Scholar
  28. 27.
    M. Inguscio, N. Ioli, A. Moretti, F. Strumia, “New FIR laser emissions in CH3OH” Proc. Third CIRP Conf. Zurich 1984, p.448 N. Ioli, A. Moretti, G. Moruzzi, F. Strumia, F. D’Amato, “New large offset FIR laser lines in CH3OH, CD30H and CH2F2” Proc. Ninth Int. Conf. Infrared and Millim. Waves Osaka 1984Google Scholar
  29. 28.
    G. Merkle, J. Heppner, Opt. Commun. in press (CH3OH) and Opt. Lett. in press (CH2F2)Google Scholar
  30. 29.
    M. Inguscio, K.M. Evenson, F.R. Petersen, F. Strumia, E. Vasconcellos, Int. J. Infr. and Millim. Waves, in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • F. Strumia
    • 1
  • N. Iolia
    • 1
  • A. Moretti
    • 1
  1. 1.Dipartimento di FisicaUniversità di Pisa and GNSM-CNRPisaItaly

Personalised recommendations