High Power, Tunable Waveguide CO2 Lasers

  • Franco Strumia
  • Nadia Ioli
Part of the NATO ASI Series book series (NSSB)

Abstract

The CO2 laser is the most popular source of coherent mid-infrared radiation and is widely used both for scientific and technological applications. High efficiency and high power can be obtained either in CW and in pulsed regime. The emitted wavelength can be tuned over many different lines in the interval 9–11 μm by using a diffraction grating as an intracavity dispersive element. The CO2 laser can also be frequency stabilized with high reproducibility. As a secondary frequency standard it plays a fundamental role in the measurement of the speed of light and in the new definition of the unit of length. Other important scientific applications are plasma generation, molecular multiphoton dissociation, isotopic separation, LIDAR, molecular spectroscopy, and generation of medium and far-infrared (MIR,FIR) coherent radiation either by stimulated Raman scattering or resonant optical pumping of molecular transitions. By means of the molecular FIR laser optically pumped by the CO2 laser this spectral region was covered for the first time with thousands of CW laser lines of relatively high power so that the laser spectroscopy has been extended down to the microwave region 1.

Keywords

Laser Line Stimulate Raman Scattering Output Mirror Small Signal Gain Waveguide Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Strumia, “ High resolution laser spectroscopy in the Far-Infrared” in “ Advances in laser spectroscopy”, F.T. Arecchi, F. Strumia, H. Walther eds, Plenum Press- NATO-ASI Series vol. B95, New York 1983, pag. 267Google Scholar
  2. 2.
    P.W. Smith, Appl. Phys. Lett. 19, 132 (1971)Google Scholar
  3. 3.
    T.J. Bridges, E.G. Burkhart, P.W. Smith, Appl Phys. Lett. 20, 508 (1972)CrossRefGoogle Scholar
  4. 4.
    J.J.Degnan, “ The waveguide laser: a review” Appl. Phys. 11, 1 (1976)CrossRefGoogle Scholar
  5. 5.
    R.L.Abrams, “ Waveguide gas lasers” in “ Laser Handbook vol. 3”, M.L. Stitch ed., North-Holland, 1979 pag. 41Google Scholar
  6. 6.
    N. Ioli, G. Moruzzi and F. Strumia, Lett. Nuovo Cim. 28, 257 (1980)CrossRefGoogle Scholar
  7. 7.
    M. Inguscio, N. Ioli, A. Moretti, G. Moruzzi and F. Strumia Opt. Comm. 37, 211 (1981)Google Scholar
  8. 8.
    P.K. Cheo, “ CO2 lasers” in “ Lasers vol. 3”, A.K. Levine and A.J. De Maria eds., Dekker N.Y. 1971 pag. 111Google Scholar
  9. 9.
    D.C. Tyte, “ Carbon dioxide lasers” in “ Advances in quantum electronics vol. 1”, D.W. Godwin ed. Academic Press NJ 1970 pag. 129Google Scholar
  10. 10.
    E.A. Marcatili and Schmeltzer, Bell System Tech. J. 43, 1783 (1964)CrossRefGoogle Scholar
  11. 11.
    R.L. Abrams, IEEE J. Quant. Electron. QE 8, 838 (1972)CrossRefGoogle Scholar
  12. 12.
    J.J. Degnan and D.R. Hall, IEEE J. Quant. Electron QE 9, 901 (1973)Google Scholar
  13. 13.
    D.R. Hall, E.K. Gorton, R.M. Jenkins, J. Appl. Phys. 48, 1212 (1977)CrossRefGoogle Scholar
  14. 14.
    N. Ioli and F. Strumia, “ Laser a CO2 a guida d’onda” in Final Report of “Progetto Finalizzato Laser di potenza” CNR in press.Google Scholar
  15. 15.
    W.W. Rigrod, J. Appl. Phys. 36, 2487 (1965)CrossRefGoogle Scholar
  16. 16.
    C.P. Christensen, C. Freed and H.A. Haus, IEEE J. Quant. Elec. QE 5, 276 (1969)Google Scholar
  17. 17.
    V.V. Grigoryants, B.A. Kuzyakov and A.M. Simitsyn, Sov. J. Quantum Electr. 9, 158 and 452 (1979)Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Franco Strumia
    • 1
  • Nadia Ioli
    • 1
  1. 1.Dipartimento di FisicaUniversità di Pisa and GNSM — CNRPisaItaly

Personalised recommendations