Advertisement

Extensions of Semiconductor Lasers to Higher Power and Longer Wavelength

  • Roy Lang
Part of the NATO ASI Series book series (NSSB)

Abstract

Semiconductor Injection Lasers or Laser Diodes (LDs) constitute a unique class of lasers because of their practical advantages, which include compact size, low voltage (1–2V) and small current (101–102 mA) required for operation, high efficiency, ability to be modulated directly with up to Gb/s current signal, and broad tunability. These features, together with the fact that they can be mass produced with semiconductor electronics technology, have made LDs most significant laser sources for industrial applications, such as optical fiber communication and optical information processing.

Keywords

Active Layer Optical Fiber Communication Gain Spectrum Refractive Index Variation Double Heterostructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. C. Casey and M. B. Panish, “Heterostucture Lasers (parts A & B),” Academic Press (New York, 1980 ).Google Scholar
  2. 2.
    G. H. B. Thompson, “Physics of Semiconductor Laser Devices,” John Willey (1980).Google Scholar
  3. 3.
    R. N. Hall et al, Phys. Rev. Lett. 9, 366 (1962).CrossRefGoogle Scholar
  4. 4.
    M. I. Nathan et al, Appl. Phys. Lett. 1, 62 (1962).CrossRefGoogle Scholar
  5. 5.
    N. Holonyak, Jr., and S. F. Bevacqa, Appl. Phys. Lett. 1, 82 (1962).Google Scholar
  6. 6.
    I. Hayashi et al, Appl. Phys. Lett. 17, 109 (1970).CrossRefGoogle Scholar
  7. 7.
    Zh. I. Alferov et al, Sov. Phys. Semicond. 4, 1573 (1971). (Translated from Fiz. Tekh. Poluprovodn. 4, 1826 (1970))Google Scholar
  8. 8.
    J. C. Dyment Appl. Phys. Lett. 10, 84 (1967).Google Scholar
  9. 9.
    H. Haug, Phys, Rev. 184, 338 (1969). See also refernces therein.Google Scholar
  10. 10.
    M. W. Fleming and A. Mooradian, IEEE I. Quantum Electron., QE-17, 44 (1981).Google Scholar
  11. I. R. Lang, in Digest of Jpn. Phys. Soc. Spring Meet., laGL13(1979) (in Japanese).Google Scholar
  12. 12.
    R. F. Kazarinov and C. H. Henry, J. Appl. Phys., 53, 463 (1982).CrossRefGoogle Scholar
  13. 13.
    M. Nakamura et al, J. Appl. Phys., 49, 4644 (1978).CrossRefGoogle Scholar
  14. 14.
    F. Stern, J. Appl. Phys. 47, 5382 (1976).CrossRefGoogle Scholar
  15. 15.
    C. H. Henry et al, J. Appl. Phys. 52, 4457 (1981).CrossRefGoogle Scholar
  16. 16.
    G. H. B. Thompson, Opto-Electron., 4, 257 (1972).CrossRefGoogle Scholar
  17. 17.
    G. H. B. Thomson et al, IEE J. Solid State Electron. Div., 2, 12 (1978).Google Scholar
  18. 18.
    R. Lang, IEEE J. Quantum Electron., QE-15 718 (1979).Google Scholar
  19. 19.
    R. Lang, Jpn. J. Appl. Phys., 19, L93 (1980)CrossRefGoogle Scholar
  20. 20.
    C. H. Henry, IEEE J. Quantum Electron., QE-18 259 (1982).Google Scholar
  21. 21.
    R. Lang, IEEE J. Quantum Electron., QE-18 976 (1982).Google Scholar
  22. 22.
    M. Wada et al, Appl. Phys. Lett. 42, 853 (1983).CrossRefGoogle Scholar
  23. 23.
    C. H. Henry et al, J. Appl. Phys. 50, 3721 (1979).CrossRefGoogle Scholar
  24. 24.
    T. Kamejima et al, Jpn. J. Appl. Phys. Suppl. 19–1 425 (1980).Google Scholar
  25. 25.
    T. Furuse, unpublished.Google Scholar
  26. 26.
    D. D. Cook and F. R. Nash, J. Appl. Phys., 46, 1660 (1975).CrossRefGoogle Scholar
  27. 27.
    K. Peterman, IEEE J. Quantum Electron., QE-18 976 (1982).Google Scholar
  28. 28.
    H. Namizaki et al, J. Appl. Phys., 45, 2785 (1974).CrossRefGoogle Scholar
  29. 29.
    K. Aiki et al, IEEE J. Quantum Electron., QE-14 89 (1979)Google Scholar
  30. 30.
    T. Tsukada, J. Appl. Phys., 45, 4899 (1974).CrossRefGoogle Scholar
  31. 31.
    H. Yonezu et al, IEEE J. Quantum Electron., QE-15 775 (1979).Google Scholar
  32. 32.
    M. Ueno, IEEE J. Appl. Phys., 45, 4899 (1974).CrossRefGoogle Scholar
  33. 33.
    D. Botez et al, Electron. Lett., 19, 882 (1983).CrossRefGoogle Scholar
  34. 34.
    K. Endo et al, Electron. Lett., 20, 728 (1984).CrossRefGoogle Scholar
  35. 35.
    D. R. Scifres et al, Electron. Lett., 19, 169 (1983).CrossRefGoogle Scholar
  36. 36.
    K. Nishi and R. Lang, in preparation.Google Scholar
  37. 37.
    T. Miya et al, Electron. Lett., 15, 106 (1979).CrossRefGoogle Scholar
  38. 38.
    Y. Horikoshi and Y. Furukawa, Jpn. J. Appl. Phys., 18, 809 (1979).CrossRefGoogle Scholar
  39. 39.
    T. Uji et al, IEEE Trans. Electron. Devices, ED-30 316 (1983).Google Scholar
  40. 40.
    S. Yamakoshi et al, Appl. Phys. Lett., 40, 144 (1982).CrossRefGoogle Scholar
  41. 41.
    A. R. Adams et al, Jpn. J. Appl. Phys. 19, L621 (1980).CrossRefGoogle Scholar
  42. 42.
    I. Mito et al, IEEE J. Light Wave Tech., LT- 1, 195 (1983).Google Scholar
  43. 43.
    W. T. Tsang and N. A. Olsson, Appl. Phys. Lett., 43, 527 (1983).CrossRefGoogle Scholar
  44. 44.
    M. Kitamura et al, IEEE J. Light Wave Tech., LT-2 363 (1984).Google Scholar
  45. 45.
    H. Kawaguchi and K. Ohtsuka, Appl. Phys. Lett., 45, 934 9 1984 ).Google Scholar
  46. 46.
    R. Dingle in “Festkorper Probleme XV, Advances in Solid-State Physics,” p.21, Pergamon-Vieweg (Berlin, 1975 ).Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Roy Lang
    • 1
  1. 1.Opto-Electronics Research LaboratoriesNEC CorporationKawasaki 213Japan

Personalised recommendations