Skip to main content

Extinction by the atmosphere

  • Chapter
Passive Infrared Detection
  • 385 Accesses

Abstract

The interactions of electromagnetic radiation with atmospheric constituents are related to their physical—chemical properties, and the extent of the phenomena depends on the integrated quantities over the path. In crossing the atmosphere, the obstacles encountered are

  1. 1.

    gas molecules and natural atmospheric constituents;

  2. 2.

    water in suspension (haze, fogs...);

  3. 3.

    water in a precipitative form (drizzle, rain, snow...);

  4. 4.

    smokes and dusts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Anderson, G.P. et al (1994) MODTRAN3: Suitability as a flux-divergence code. Proc. of the 4th ARM Science Team Meeting, Charleston, SC.

    Google Scholar 

  • Birnbaum, G., Cohen E.R. (1976) Theory of line shape in pressure-induced absorption. Can. J. Phys, 54, pp. 593–602.

    Article  Google Scholar 

  • Bohren, C.F. (1989) Selected papers on scattering in the atmosphere. SPIE Milestone Series, 7.

    Google Scholar 

  • Breene, R.G., Jr. (1981) Theories of spectral line shape, John Wiley and Sons, New York.

    Google Scholar 

  • Chetwynd, J.G. et al (1994) FASCODE: An update and applications in atmospheric remote sensing. Proc. SPIE, Optical spectroscopic techniques for atmospheric research, 2266.

    Google Scholar 

  • Deepak, A. et al. (1980) Atmospheric water vapor, Academic Press, New York.

    Google Scholar 

  • Deirmendjian, D. (1969) Electromagnetic scattering on spherical polydispersions, Elsevier, New York.

    Google Scholar 

  • Ebersole, J.F. et al. (1985) Effects of hydrometeors on electromagnetic wave propagation, AFGL—TR-84–0318, Air Force Geophysics Laboratory Air Force Systems Command, Hanscom AFB, MA.

    Google Scholar 

  • Elsasser, W.M. (1938) Mean absorption and equivalent absorption coefficient of a band spectrum. Phys. Rev, 54, 126.

    Article  Google Scholar 

  • Friedlander, S.K. (1977) Smoke, dust and haze. Fundamentals of aerosol behavior, John Wiley and Sons, New York.

    Google Scholar 

  • Gates, D.M. et al. (1964) Line parameters and computed spectra for water vapor band at 2,7 pm, NBS MN-71, National Bureau of Standards, Washington, DC.

    Google Scholar 

  • Gille, J.C., Ellingson, R.G. (1968) Correction of random exponential band transmissions for Doppler effects. Appl. Opt., 7 (3), pp. 471–74.

    Google Scholar 

  • Golden, S.A. (1967) The Doppler analog of the Elsasser band model. J. Quant. Spectrosc. Radiat. Transfer, 7, pp. 483–94.

    Article  Google Scholar 

  • Goody, R.M. (1952) A statistical model for water-vapour absorption. Q. J. R. Meteorol. Soc, 58, pp. 165–69.

    Article  Google Scholar 

  • Goody, R.M., Yung, Y.L. (1989) Atmospheric radiation theoretical basis, 2nd edn, Oxford University Press, Oxford, UK.

    Google Scholar 

  • Herzberg, G. (1966) Electronic spectra and electronic structure of polyatomic molecules, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Hodges, J.A. (1972) Aerosol extinction contribution to atmospheric absorption in infrared wavelengths. Appl. Opt, 11, pp. 2304–10.

    Article  Google Scholar 

  • Ishimaru, A. (1978) Wave propagation and scattering in random media, Vol. 1–2, Academic Press, New York.

    Google Scholar 

  • Joss, S., Waldvogel, A. (1969) Raindrop size distribution and sampling size errors. J. Atmos. Sci, 26, p. 566.

    Article  Google Scholar 

  • Kerker, M. (1969) The scattering of light and other electromagnetic radiation, Academic Press, New York.

    Google Scholar 

  • Kerker, M. (ed.) (1988) Selected papers on light scattering. Proc. SPIE, 951, Vol. 1–2.

    Google Scholar 

  • Kneizys, F.X. et al (1988) Users guide to LOWTRAN 7, AFGL—TR-880177, Air Force Geophysics Laboratory Air Force Systems Command, Hanscom AFB, MA.

    Google Scholar 

  • Kuo-Nan Liou, (1980) An introduction to atmospheric radiation, Academic Press, New York.

    Google Scholar 

  • LaRocca, A.J., Turner, R.E. (1975) Atmospheric transmittance and radiance: methods of calculation, Report 107600–10—T, Enviromnental Research Institute of Michigan (BRIM), Ann Arbor, MI.

    Google Scholar 

  • Ma, Q., Tipping, R.H. (1991) A far wing line shape theory and its application to the water continuum absorption in the infrared region. J. Chem. Phys, 95, p. 6290.

    Article  Google Scholar 

  • Malkmus, W. (1967) Random Lorentz band model with exponential-tailed S-’ line intensity distribution function. J. Opt. Soc. Am, 57 (3), pp. 32–329.

    Article  Google Scholar 

  • Marshall, J.S., Palmer, W.M.K. (1948) The distribution of raindrops with size. J. Meteorol, 5, pp. 165–66.

    Article  Google Scholar 

  • McCartney, E.J. (1976) Optics of the atmosphere: Scattering by molecules and particles, John Wiley and Sons, New York.

    Google Scholar 

  • McCartney, E.J. (1983) Absorption and emission by atmospheric gases: The physical processes, John Wiley and Sons, New York.

    Google Scholar 

  • McClatchey, R.A. et al (1972) Optical properties of the atmosphere, Report AFCRL-72–0497, Air Force Cambridge Research Laboratories, 3rd edn, Bedford, MA.

    Google Scholar 

  • Ontar, Code PCTRAN, Ontar corporation, 129 University road, Brookline, MA 0246–4532.

    Google Scholar 

  • Passman, S., Larmore, L. (1956) Atmospheric transmission, RAND Pap, p. 897.

    Google Scholar 

  • Patterson, E.M., Gillette, D.A. (1978) Measurements of visibility vs mass concentration for airborn soil particles, 11, National Center for Atmospheric Research (NOAA), Boulder.

    Google Scholar 

  • Pinnick, R. et al (1979) Relastionships between infrared extinction, absorption and liquid water content of fogs, ASL-T-0037, US Army Atmospheric Sciences Laboratory, White Sands Missile Range, NM.

    Google Scholar 

  • Plass, G.N. (1960) Useful representations for measurements of spectral band absorption. J. Opt. Soc. Am, 50, pp. 868–75.

    Article  Google Scholar 

  • Rothman, L.S. et al (1992) The HITRAN molecular database: Editions of 1991 and 1992, J. Quant. Spectrosc. Radiat. Transfer, 48, pp. 469–507.

    Article  Google Scholar 

  • Schroeder, J., Harvey, S. (1994) ONTAR products for the environment, Bull. 5086899622, North Andover, MA.

    Google Scholar 

  • Seagraves, M.A. (1981) Visible and infrared transmission through snow. Proc. SPIE, Atmospheric effects on electro-optical, infrared, and millimeter wave systems performance, 305.

    Google Scholar 

  • Shettle, E.P. (1990) Models of aerosols, clouds and precipitation for atmospheric propagation studies. Atmospheric propagation in the UV, visible, IR and mm-wave region and related systems aspects,AGARD-CP-454.

    Google Scholar 

  • Smith, F.G. (ed.) (1993) The infrared and electro-optical systems handbook. Vol. 2: Atmospheric propagation of radiation, Environmental Research Institute of Michigan (ERIM), Ann Arbor, MI. and SPIE Optical Engineering Press, Bellingham, WA.

    Google Scholar 

  • Tsao, C.J., Curnutte, B. (1962) Line widths of pressure broadened spectral lines. J. Quant. Spectrosc. Radiat. Transfer, 2, 41.

    Article  Google Scholar 

  • Van Vleck, J.H., Weisskopf, V.F. (1945) On the shape of collision-broadened lines. Rev. Mod. Phys, 17, pp. 227–36.

    Article  Google Scholar 

  • Wyatt, P.J., Stull, V.R., Plass, G.N. (1962) Quasi-random model of band absorption. J. Opt. Soc. Am, 62, 1209.

    Article  Google Scholar 

  • Zuev, V.E. (1974) Propagation of visible and infrared radiation in the atmosphere, John Wiley and Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Caniou, J. (1999). Extinction by the atmosphere. In: Passive Infrared Detection. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6140-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6140-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5090-1

  • Online ISBN: 978-1-4757-6140-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics