Skip to main content

Structure of the atmosphere

  • Chapter
Passive Infrared Detection
  • 384 Accesses

Abstract

Under normal environmental conditions, the electromagnetic radiation emitted by radiating sources only reaches a receptor after having passed through the atmosphere. But note that the presence of this material medium is not required for propagation: unlike waves whose natures are different such as mechanical vibrational waves or thermal waves, and whose existence is tied to the temporary modification of local properties of the material support, electromagnetic energy is capable of progression through a vacuum. Moreover its progression there is excellent since the route through a vacuum is effected without losses whilst a path through matter, whether gaseous, liquid or solid, is accompanied by degradations whose origin depend upon the physical state and the composition of the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Coulman, C.E. et al. (1988) Outer scale of turbulence appropriate to modeling refractive-index profiles. Appl. Opt., 27, pp. 155–60.

    Article  Google Scholar 

  • CRC Handbook of chemistry and physics (1991) 72nd edn, (ed. D.R. Lide), CRC Press, Boca Raton, FL.

    Google Scholar 

  • Crittenden, E.C. et al. (1978) Effects of turbulence on imaging through the atmosphere. Proc. SPIE, 142, pp. 130–4.

    Article  Google Scholar 

  • Farrow, J.B., Gibson, A.F (1970) Influence of the atmosphere on optical systems. Opt. Acta, 17, pp. 317–36.

    Article  Google Scholar 

  • Fried, D.L. (1966) Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J. Opt. Soc. Am., 56 (10), p. 1372.

    Article  MathSciNet  Google Scholar 

  • Fried, D.L., Seidman, J.B. (1967) Laser beam scintillation in the atmosphere. J. Opt. Soc. Am., 57 (2), pp. 181–5.

    Article  Google Scholar 

  • Gebhardt, F.G. (1980) Development of turbulence effects models, Science Applications Inc., Ann Arbor, MI.

    Google Scholar 

  • Hill, R.J. et al. (1980) Refractive index and absorption fluctuations in the infrared caused by temperature, humidity and pressure fluctuations, J. Opt. Soc. Am., 70 (10), pp. 1192–1205.

    Article  Google Scholar 

  • Hufnagel, R.E., Stanley, N.R. (1964) Modulation transfer function associated with image transmission through turbulent media. J. Opt. Soc. Am., 54 (1), pp. 52–61.

    Article  Google Scholar 

  • Ishimaru, A. (1978) Wave propagation and scattering in random media, Vol. 2, Academic Press, New York.

    Google Scholar 

  • Kerr, J.R., Dunphy, J.R. (1973) Experimental effects on finite transmitter apertures on scintillations. J. Opt. Soc. Am., 63 (1).

    Google Scholar 

  • Kolmogorov, A. (1961) Turbulence, classic papers on statistical theory, (eds S. K. Friendlander and L. Topper), Interscience Publishers, New York.

    Google Scholar 

  • Kraichnan, R.H. (1974) On Kolmogorov’s inertial-range theories. J. Fluid Mech., 62, pp. 305–30.

    Article  MathSciNet  MATH  Google Scholar 

  • Lawrence, R.S. (1976) A review of the optical effects of the clear turbulent atmosphere. Proc. SPIE, 75, pp. 2–8.

    Article  Google Scholar 

  • McCartney, E.J. (1976) Optics of the Atmosphere, JohnWiley & Sons, New York.

    Google Scholar 

  • Middleton, W.E.K. (1952) Vision through the Atmosphere, University of Toronto Press, Buffalo, NY.

    Google Scholar 

  • Monin, A.S., Yaglom, A.M. (1975) Statistical fluid mechanics. Vol. 2: Mechanics of turbulence, The MIT Press, Cambridge, MA.

    Google Scholar 

  • Peck, E.R., Reeder, K. (1972) Dispersion of air. J. Opt. Soc. Am., 62 (8).

    Google Scholar 

  • Richardson, M. B. (1981) A general algorithm for the calculation of laser beam spreading, ASL—TR-0116, US Army Atmospheric Sciences Laboratory, White Sands Missile Range, NM.

    Google Scholar 

  • Smith, F.G. (ed.) (1993) The infrared and electro-optical systems handbook. Vol. 2: Atmospheric propagation of radiation, Environmental Research Institute of Michigan (ERIM), Ann Arbor, MI. and SPIE Optical Engineering Press, Bellingham, WA.

    Google Scholar 

  • Smith, L., Hilgeman, L.T. (1981) High resolution lower atmospheric transmission prediction over long paths. Proc. SPIE, 277.

    Google Scholar 

  • Strohbehn, J.W. (1968) Line-of-sight wave propagation through the turbulent atmosphere. Proc. IEEE, 56 (8), pp. 1301–18.

    Article  Google Scholar 

  • Strohbehn, J.W. (1971) Optical propagation through the turbulent atmosphere. Prog. Opt., 9, pp. 73–122.

    Article  Google Scholar 

  • Tatarski, V. I. (1961) Wave propagation in a turbulent medium, McGraw—Hill, New York.

    MATH  Google Scholar 

  • Weichel, H. (1985) Atmospheric propagation of laser beams. Proc. SPIE, 547, pp. 1–15.

    Article  Google Scholar 

  • Young, A.T. (1970) Aperture filtering and saturation of scintillation. J. Opt. Soc. Am., 60 (2), 248–50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Caniou, J. (1999). Structure of the atmosphere. In: Passive Infrared Detection. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6140-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6140-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5090-1

  • Online ISBN: 978-1-4757-6140-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics