Photon detectors

  • Joseph Caniou


As opposed to the thermal detectors studied previously, photon detectors (or quantum detectors) work by direct interaction of photons with electrons. The various photon detection mechanisms are the following.


Reverse Bias Minority Carrier Depletion Layer Unit Surface Area Photon Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blouke, M.M., Burgett, C.B.,Williams R.L. (1973) Sensitivity limits for extrinsic and intrinsic infrared detectors. Infrared Phys., 13(1), pp. 6172.Google Scholar
  2. Bode, D. (1966) Lead salt detectors, Academic Press, New York.Google Scholar
  3. Bube, R.H. (1978) Photoconductivity of solids, (ed. R.F. Krieger), Huntington, New York.Google Scholar
  4. Burstein, E., Pines G., Sclar N. (1956) Optical and photoconductive properties of silicon and germanium. Photoconductive Conference, (eds R.G. Breekenridge et al.), John Wiley and Sons, New York, pp. 353–413.Google Scholar
  5. Cabanski, W.A., Schulz, M.J. (1991) Electronic and IR—optical properties of silicide/silicon interfaces. Infrared Phys., 32, pp. 29–44.CrossRefGoogle Scholar
  6. Capper, P. (1997) Narrow gap II—VI compounds for optoelectronic and electromagnetic applications, Chapman and Hall, London.CrossRefGoogle Scholar
  7. Capper, P. et al. (1996) Infra-red materials activities at GEG—Marconi Infra-Red Limited: Part 1— Bulk growth techniques. GEC J. Res., 13(3), pp. 164–74.Google Scholar
  8. Dennis, P.N.J. (1986) Photodetectors, Plenum Press, New York.CrossRefGoogle Scholar
  9. Elliott, C.T. (1981) Handbook on semiconductors, Vol. 4, (ed. C. Hilsum), North-Holland Publishing Company, Amsterdam, The Netherlands.Google Scholar
  10. Ferry, D.K. (1985) Gallium arsenide technology, Sams of Macmillan, Howard W. Sams and Co., Indianapolis, IN.Google Scholar
  11. Hansen, G.L., Schmit, J.L., Casselman, T.N. (1982) Energy gap versus alloy composition and temperature in Hgl,Cd„Te. J. Appl. Phys. 53 (10), p. 7099.CrossRefGoogle Scholar
  12. Hulme, K.F., Mullin, J.B. (1962) Indium antimonide — A review of its preparation, properties and device applications. Solid-State Electron., 5, 211.CrossRefGoogle Scholar
  13. Johnson, T.H. (1984) Lead salt detectors and arrays: PbS and PbSe. Proc. SPIE, 443, pp. 60–94.CrossRefGoogle Scholar
  14. Lawson, W.D. et al. (1959) Preparation and properties of HgTe and mixed crystals of HgTe—CdTe. J. Phys. Chem., 9, 325.Google Scholar
  15. Long, D. (1980) Photovoltaic and photoconductive infrared detectors. Optical and infrared detectors (ed. R.J. Keyes ), Springer—Verlag, Berlin.Google Scholar
  16. Moss, T.S., Burrell, G.J., Ellis, B. (1973) Semiconductor opto-electronics, John Wiley and Sons, New York.Google Scholar
  17. Murray, L.A., Wang, K., Hesse, K. (1980) A review of avalanche photodiodes, trends and markets. Opt. Spectra, 14 (4), p. 54.Google Scholar
  18. O’Keefe, E.S. et al. (1997) Infra-red materials activities at GEG—Marconi Infrared Limited: Part 2 — Epitaxial growth technique. GEC J. Res., 14(1), pp. 7–18.Google Scholar
  19. Reine, M.B., Broudy, R.M. (1977) A review of HgCdTe infrared detector technology. Proc. SPIE, 124, p. 80.CrossRefGoogle Scholar
  20. Rogatto, W.D. (ed.) (1993) The infrared and electro-optical systems handbook. Vol. 3: Electro-optical components, Environmental Research Institute of Michigan (ERIM), Ann Arbor, MI. and SPIE Optical Engineering Press, Bellingham, WA.Google Scholar
  21. Ross, D.A. (1979) Solid state photodetectors — The photodiode and phototransistor. Optoelectronic devices and optical imaging techniques, Macmillan, New York.Google Scholar
  22. Sclar, N., (1984) Properties of doped silicon and germanium infrared detectors. Prog. Quantum Electron., 9(3), pp. 145–257.CrossRefGoogle Scholar
  23. Smith, R.A., Jones, F.E., Chasmar, R.P. (1958) The detection and measurement of infrared radiation, Clarendon Press, Oxford, UK.Google Scholar
  24. Streetman, B.G. (1990) Solid state electronic devices, Prentice—Hall, Englewood Cliffs, NJ.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Joseph Caniou
    • 1
  1. 1.Centre d’Electronique de l’Armement (CELAR)DGABruzFrance

Personalised recommendations