Laser Light Scattering and Fluorescence Diagnostics of Rich Flames Produced by Gaseous and Liquid Fuels

  • A. D’Alessio


Rich combustion systems present a much more complex chemistry than stoichiometric or lean ones: compounds from unsaturated C2 hydrocarbons to polynuclear aromatic hydrocarbons (PAH) are formed and destroyed, soot particles nucleate, grow and agglomerate and eventually burn out at different stages of the combustion. Furthermore, the fuel is introduced in the form of liquid droplets in many practical systems.

The present paper presents initially a short summary of the scattering and extinction properties of spherical particles, from the Rayleigh regime to the ray optics limit (geometric regime), referring particularly to the simultaneous presence of soot particles and fuel droplets.

Problems connected with polydispersion of spheres and the presence of particles of different shapes (spheroids, clusters, chains, etc.) are also briefly discussed.

The paper reviews subsequently the u.v./visible absorption and fluorescence spectra of some PAH compounds and discusses their interferences with the extinction due to soot particles and/or droplets and the spontaneous Raman effects due to low molecular mass compounds. The experimental section presents initially some laser light scattering (LLS) and extinction measurements carried out on large diesel oil spray flames. A procedure for distinguishing between fuel droplets and soot particles is illustrated, and average size and number concentration of soot particles are evaluated. The effects of swirl on the spatial distribution of soot particles and fuel droplets for these types of flames are also shown. Optical results obtained on premixed and diffusion CH4O2 flames are compared in the next section: LLS measurements provide evidence for zones of early formation of soot particles while u.v. absorption and fluorescence spectra are related to the build-up of PAH compounds.

The final part of the paper compares the experimental results with the theoretical models and discusses agreement and limits; suggestions are advanced both for more refined theoretical approaches and for more sophisticated and systematic experiments.


Absorption Cross Section Soot Particle Diffusion Flame Premix Flame Complex Refractive Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Symbols


cross section [cm2 sr−1]


monochromatic cross section [cm sr−1]


particle diameter [Å], [nm], [m]


efficiency: 4C/πD2

f (α)

normalized size density distribution of soot

f (D)

size density distribution of droplets

I (υ,α, m)

scattering function: 4πQ/λ 2


incident light intensity [W cm−2]


imaginary part of refractive index


complex refractive index


real part of refractive index


dispersion coefficient, d lnEext/dlnλ

p (υ, m)

phase function: 4πC(υ, m)/Cscatt


scattering or fluorescence coefficient [cm−2 sr−1]


monochromatic scattering or fluorescence coefficient [cm−2 sr−1]


size parameter. πD/λ


mean size parameter


polarization ratio: QHH/QVV


asymmetry ratio: QVV1)/QVV2)


scattering volume [cm3]


detection solid angle [sr]


light wavelength [nm]


wavelength ratio: QVV11)/QVV2)


standard deviation








horizontally polarized light




vertically polarized light












Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. C. Van de Hust, “Light Scattering by Small Particles,” Wiley; New York, 1957.Google Scholar
  2. 2.
    M. Kerker, “The Scattering of Light,” Academic Press, New York, 1969.Google Scholar
  3. 3.
    H. C. Hottel and A. F. Sarofim, “Radiative Heat Transfer, ” McGraw-Hill, New York, 1967.Google Scholar
  4. 4.
    A. R. Jones, Prog. Energy Combust. Sci., Vol. 5 (1969), p. 73.Google Scholar
  5. 5.
    B. Chu, “Laser Light Scattering,” Academic Press, New York, 1974.Google Scholar
  6. 6.
    B. J. Berne and R. Pecora, “Dynamic Light Scattering, ” Wiley, New York, 1976.Google Scholar
  7. 7.
    S. S. Penner, J. M. Bernard and T. Jerskey, Acta Astronautica (1976), p. 93.Google Scholar
  8. 8.
    J. F. Driscoll, D. M. Mann and W. K. McGregor, Combust. and Techn., Vol. 20 (1979), p. 41.CrossRefGoogle Scholar
  9. 9.
    G. Gouesbet, P. Flament, M. Weill, Internal. Report TTI/GFW/79/11 /15 Laboratoire de Thermodynamique Unversité de Rouen, 1979.Google Scholar
  10. 10.
    F. Durst, A. Melling, J. H. Whitelaw, “Principles and Practice of Laser-DopplerAnemometry”, Academic Press, New York, 1976.Google Scholar
  11. 11.
    N. A. Chigier, K. Dvorak, Fifteenth Symp. on Comb., The Comb. Institute, (1974), p. 573.Google Scholar
  12. 12.
    W. M. Farmer, Appl. Optic, Vol. 11 (1972), p. 2603.CrossRefGoogle Scholar
  13. 13.
    G. Herzberg, “Electronic Spectra and Electronic Structure of Polyatomic Molecules” Van Nostrand, Princeton, New Jersey, 1966.Google Scholar
  14. 14.
    A. G. Gaydon “The Spectroscopy of Flames” Chapman and Hall, London, 1974.Google Scholar
  15. 15.
    E. Clar, “Polycyclic Hydrocarbons” Vol. 1 and 2, Academic Press, London, 1974.Google Scholar
  16. 16.
    I. B. Berlman, “Fluorescence Spectra of Aromatic Molecules,” Academic Press, New York, 1971.Google Scholar
  17. 17.
    J. B. Birks, “The spectroscopy of the 7r-electronic states of aromatic hydrocarbons” in “Organic Molecular Photophysics” J. B. Birks (ed.) Wiley, New York, Vol. 1 (1973), p. 1.Google Scholar
  18. 18.
    M. Stockburger, “Fluorescence of aromatic molecular vapours”in “Organic Molecular Photophysics” J. B. Birks (ed.) Wiley, New York, Vol. 1 (1973), p. 57.Google Scholar
  19. 19.
    M. Lapp and C. M. Penney, (eds.) “Laser Raman Gas Diagnostics,” Plenum Press, New York, 1974.Google Scholar
  20. 20.
    S. Lederman, Progr. Energy and Comb., Vol. 3 (1977), p. 1.CrossRefGoogle Scholar
  21. 21.
    C. Eckbreth, P. A. Bonczyk and J. F. Verdieck, Progr. Energy and Comb., Vol. 5 (1979), p. 253.CrossRefGoogle Scholar
  22. 22.
    M. Born and E. Wolf “Principles of Optics,” Academic Press, New York, 1975.Google Scholar
  23. 23.
    A. D’Alessio and M. Ambrosio, La Termotechnica, Vol. 30 (1976), p. 460.Google Scholar
  24. 24.
    W. H. Dalzell and A. F. Sarofim, Trans. ASME, Vol. 91 (1969), p. 100.CrossRefGoogle Scholar
  25. 25.
    S. C. Lee and C. L. Tien, to be published in 18th Symposium (Int.) on Combusion.Google Scholar
  26. 26.
    E. U. Condon, “Molecular Optics” in “Handbook of Physics” E. U. Condon and H. Odishaw, (eds.), McGraw-Hill, New York, 1967.Google Scholar
  27. 27.
    R. R. Rudder and D. R. Bach, J. Opt. Soc. Am., Vol. 58 (1968), p. 260.CrossRefGoogle Scholar
  28. 28.
    Landolt-Börnstein “Zahlenwerthe und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik” II Band, 8 Teil, Optische Konstanten, Springer-Verlag, Berlin, 1968.Google Scholar
  29. 29.
    H. J. Bridge and A. D. Buckingham, Proc. Roy. Soc., A Vol. 295 (1966), p. 334.CrossRefGoogle Scholar
  30. 30.
    S. Bhagavantam, “Light Scattering and the Raman effect,” Chemical Publishing, New York, 1942.Google Scholar
  31. 31.
    P. Ferrara, “Tesi di Laurea in Ingegneria Chimica, ” Napoli, 1977.Google Scholar
  32. 32.
    A. R. Jones, “Combustion Institute European Symposium,” F. J. Weinberg (ed.) Academic Press, London, (1973), p. 376.Google Scholar
  33. 33.
    H. Senftleben and E. Benedict, Ann. Phys. (Leipzig) IV, Vol. 54 (1917), p. 65.CrossRefGoogle Scholar
  34. 34.
    E. A. Taft, personal communication 1969, see also ref. [23].Google Scholar
  35. 35.
    S. Asano and G. Yamaroto, Appl. Optics, Vol. 14 (1975), p. 29.Google Scholar
  36. 36.
    A. F. Stevenson, J. Appl. Phys., Vol. 24 (1953), p. 1134 and p. 1143.Google Scholar
  37. 37.
    W. Heller and M. Nakagaki, J. Chem. Phys. Vol. 60 (1974), p. 3297; Vol. 61 (1974), p. 3619.Google Scholar
  38. 38.
    S. Levine and J. Olaofe, J. Coll. Interf. Sci., Vol. 27 (1968), p. 442.Google Scholar
  39. 39.
    J. C. Ravey, J. Coll. lnterf. Sci., Vol. 46 (1974), p. 139.CrossRefGoogle Scholar
  40. 40.
    A. R. Jones, Proc. Roy. Soc. Lond A., Vol. 366 (1979), p. 111.CrossRefGoogle Scholar
  41. 41.
    A. R. Jones, to be published in J. Phys. D.Google Scholar
  42. 42.
    R. S. Kirshnan, Proc. Ind. Acad. Sci., Vol. A7 (1938), p. 91.Google Scholar
  43. 43.
    J. V. Dave, Appl. Opt. Vol. 8 (1969), p. 155.CrossRefGoogle Scholar
  44. 44.
    S. T. Shipley and J. A. Weinman, J. Opt. Soc. Am., Vol. 68 (1978), p. 130.CrossRefGoogle Scholar
  45. 45.
    H. M. Nussenzveig, J. Opt. Soc. Am., Vol. 69 (1979), p. 1068.CrossRefGoogle Scholar
  46. 46.
    I. Shimizu, 1st International Conference on Liquid Atomization and Spray Systems, Tokyo, Japan, 27–31 August, 1978.Google Scholar
  47. 47.
    J. Swithenbank, et al. A.I.A.A. 14th Aerospace Sciences Meeting Paper 76–79, Washington D.C., Jan. 26–28, 1976.Google Scholar
  48. 48.
    B. D. Crittenden and R. Long, Comb. and Flame, Vol. 20 (1973), p. 359.CrossRefGoogle Scholar
  49. 49.
    A. Di Lorenzo and S. Masi, Second European Symposium on Comb., Orleans, (1975), p. 368.Google Scholar
  50. 50.
    J. D. Bittner and J. B. Howard, Eighteenth Symposium ( International) on Combustion, Abstracts of papers, (1980), p. 41.Google Scholar
  51. 51.
    J. R. Platt, “Systematics of the Electronic Spectra of Conjugated Molecules,” Wiley, New York, 1964.Google Scholar
  52. 52.
    T. Deinum, C. J. Werkhoven, R. P. H. Longelaar, J. Rettschick and J. D. W. Van Voorst, Chem. Phys. Letts., Vol. 27 (1974), p. 552.CrossRefGoogle Scholar
  53. 53.
    D. S. Coe and J. I. Steinfeld, Chem. Phys. Letts. to be published.Google Scholar
  54. 54.
    A. Di Lorenzo, A. D’Alessio, V. Cincotti, S. Masi, P. Menna, C. Venitozzi, Eighteenth Symposium ( Int.) on Combustion, Abstracts of papers (1980), p. 17.Google Scholar
  55. 55.
    A. D’Alessio, A. Di Lorenzo, F. Beretta and C. Venitozzi, Fourteenth Symposium ( Int.) on Combustion, The Combustion Institute, (1973), p. 941.Google Scholar
  56. 56.
    A. D’Alessio, A. Di Lorenzo, A. F. Sarofim, F. Beretta, S. Masi and C. Venitozzi, Fifteenth Symposium ( Int.) on Combustion, The Combustion Institute, (1975), p. 1427.Google Scholar
  57. 57.
    A. D’Alessio, A. Di Lorenzo, A. Borghese, F. Beretta and S. Masi, Sixteenth Symposium ( Int.) on Combustion, The Combustion Institute, (1977), p. 695.Google Scholar
  58. 58.
    F. Beretta, A. Cavaliere, A. D’Alessio and C. Noviello, Comb. Sci. Techn., Vol. 22 (1980), p. 1.CrossRefGoogle Scholar
  59. 59.
    B. S. Haynes, H. Jander and H. Gg. Wagner, Ber. Bunsenges. Phys. Chem. Vol. 84 (1980), p. 585.CrossRefGoogle Scholar
  60. 60.
    K. Muller-Dethlefs, Ph.D. Thesis, Imperial College, London, 1979.Google Scholar
  61. 61.
    G. Prado, J. Jagoda, K. Neoh and J. Lahaye, Eighteenth Symposium ( Int.) on Combustion, Abstracts of papers, (1980), p. 41.Google Scholar
  62. 62.
    H. Bockhorn, F. Fetting, U. Meyer, R. Reck and G. Wannemacher, Eighteenth Symposium ( Int.) on Combustion, Abstracts of papers, (1980), p. 42.Google Scholar
  63. 63.
    P. A. Bonczyk, Comb. and Flame, Vol. 35 (1979), p. 191.CrossRefGoogle Scholar
  64. 64.
    F. Beretta, A. Cavaliere, A. D’Alessio, C. Noviello and C. Scodellaro, paper presented at Italian Flame Days, Cervia (Italy), June 1980, in press in “Rivista dei Combustibili”.Google Scholar
  65. 65.
    F. Beretta, A. Cavaliere, A. Ciajolo, A. D’Alessio, A. Di Lorenzo, C. Langella and C. Noviello, Eighteenth Symposium ( Int.) on Combustion, Abstracts, of papers, 1980.Google Scholar
  66. 66.
    A. Cavaliere and A. D’Alessio, Comb. Science and Techn., Vol. 21 (1980), p. 153.CrossRefGoogle Scholar
  67. 67.
    A. D’Alessio, A. Di Lorenzo, G. Micera and F. Beretta, 2° Simposio Internazionale di Dinamica delle Reazioni Chimiche su “Le Fiamme quali Reazioni in Flusso–The Flames as Reaction in Flow,” Padova -ITALY–15–17 dicembre (1975), p. 147, C.N.R. Padova 1976.Google Scholar
  68. 68.
    F. Beretta, A. Borghese, A. D’Alessio and C. Venitozzi, Workshop on “Laser Measurements in Combustion,” Urbino -ITALY -7–9 September, 1977.Google Scholar
  69. 69.
    B. S. Haynes and H. Gg. Wagner, Ber. Bunsenges. Phys. Chem., Vol. 84 (1980), p. 499.CrossRefGoogle Scholar
  70. 70.
    W. G. Mallard and P. K. Schenck, personal communication, 1979.Google Scholar
  71. 71.
    V. Cincotti and P. Menna, unpublished results, 1980.Google Scholar
  72. 72.
    V. Cincotti, Tesi di Laurea in Ingegneria Chimica, Napoli -ITALY -1980.Google Scholar
  73. 73.
    V. Cincotti, A. D’Alessio, P. Menna and C. Venitozzi, paper presented at Italian Flame Days, Cervia (Italy), June 1980, to be published in “La Rivista dei Combustibili”.Google Scholar
  74. 74.
    J. H. Kent, H. Jander and H. Gg. Wagner, Eighteenth Symposium ( Int.) on Combustion, Abstract of Papers, (1980), p. 41.Google Scholar
  75. 75.
    A. G. Gaydon and H. G. Wolfhard, “Flames, Their Structure, Radiation and Temperature,” Chapman and Hall, 1970.Google Scholar
  76. 76.
    R. C. Millikan, “Temperature, Its Measurements and Control in Science and Industry,” Vol. III, Part 2, Reinhold, New York (1962), p. 497.Google Scholar
  77. 77.
    U. Bonne and H. Gg. Wagner, Ber. Bunseges. Phys. Chem., Vol. 69 (1965), p. 35.Google Scholar
  78. 78.
    A. D’Alessio, F. Beretta and C. Venitozzi, Comb. Sci. Techn., Vol. 5 (1972), p. 263.CrossRefGoogle Scholar
  79. 79.
    B. B. Land and A. G. Gaydon, Comb. and Flame, Vol. 16 (1971), p. 55.CrossRefGoogle Scholar
  80. 80.
    P. Menna, Tesi di Laurea in Ingegneria Chimica, Napoli, 1979.Google Scholar
  81. 81.
    H. J. Haink and M. Jungen, Chem. Phys. Letts., Vol. 61 (1979), p. 319.CrossRefGoogle Scholar
  82. 82.
    K. Fujiwara, N. Omenetto, J. B. Bradshaw, J. N. Bower and J. D. Winefordner, Applied Spect., Vol. 34 (1980), p. 85.CrossRefGoogle Scholar
  83. 83.
    A. Cavaliere, unpublished results.Google Scholar
  84. 84.
    S. Chippet and W. A. Gray, Comb. and Flame, Vol. 31 (1978), p. 149.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • A. D’Alessio
    • 1
  1. 1.University of NaplesNaplesItaly

Personalised recommendations