Skip to main content

Effects of Flame Temperature and Air-Fuel Mixing on Emission of Particulate Carbon from a Divided-Chamber Diesel Engine

  • Chapter
Particulate Carbon

Abstract

The effect of flame temperature on particulate carbon emission from divided-chamber diesel engines was examined by adding various quantities of 02 and N2 to the intake air with the engines operating at several different loads and speeds. At a given operating condition for a fixed combustion chamber geometry, intake gas addition was expected to influence chemical kinetics without affecting the air-fuel mixing. Particulate carbon and CO were found to increase with N2 addition and decrease with 02 addition, whereas NOx emissions exhibited opposite trends.

Since the major portion of the combustion event in diesel engines is known to be diffusion controlled, changes in particulate carbon emissions due to 02 or N2 addition should be related to variations in the stoichiometric adiabatic flame temperature (Tf). Both soot and NOx emissions were correlated with calculated Tf −1, yielding overall activation energies for the processes involved. The overall activation energy for each pollutant was found to be independent of engine speed and load for a given combustion chamber geometry, indicating that the kinetic mechanisms involved in the generation of these species were not altered significantly by these engine parameters. In addition, a one-to-one correspondence was observed in this study between soot and CO, which suggests some similarity between the kinetic and air-fuel mixing processes governing the formation and oxidation of both.

Air-fuel mixing effects were varied by changing the load and speed and by employing different combustion chamber geometries. Variations in particulate carbon emissions with load and speed were characterized by a mixing parameter involving average fuel flow rate, engine speed, and the quantity of fuel injected per cycle, while for NOx the mixing parameter depended on average fuel flow rate and engine speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Ainj :

Nozzle opening area (Eq. 29)

a:

Constant

B:

Parameter(Table 2)

C, c :

Constant

D:

Combustion chamber diameter (Eq. 8)

Ds :

Effective nozzle diameter (Eq. 4)

d:

Nozzle orifice diameter (Eq. 8)

do :

Injector hole diameter (Eq. 10 and Table 2)

E:

Activation energy

EIC:

Particulate carbon emission index

EINOx :

NOx emission index

EICO:

CO emission index

F:

Quantity of fuel injected per cycle

Fs :

Fraction of cylinder volume containing soot formation zones (Eq. 18)

G:

Jet thrust (Table 2)

Ġo :

Jet maomentum dlux (Eq.2)

g:

Gravitational constant

H:

Depth of combustion chamber (Eq. 8)

J:

Momentum flux ratio (Eq. 8)

K:

Equilibrium constants

k:

Reaction rate constants

L:

Length scale

s :

Mass of soot (Eq. 18)

f :

Fuel flow rate

fref :

Fuel flow rate at a reference condition

fref :

Non-dimensional fuel flow rate

o :

Injector mass flow rate (Eq. 3)

N:

Engine soeed

Nref :

Engine speed at a reference condition

N*:

Non-dimensional engine speed

n:

Number of injector holes (Eq. 10)

n:

Constant (Eq. 18)

P:

Pressure

P:

Constant

Po :

Local partial pressure of 02 (Eq. 19)

Ps :

Partial pressure of unburned soot (Eq. 18)

Q:

Fuel per cycle (Eq. 10)

q:

Constant

R:

Universal gas constant

r:

Constant

Re:

Reynolds number

Ri:

Richardson number

S:

Swirl number

T:

Temperature

Tf :

Flame temperature

To :

Local temperature

T φ :

Burned gas temperature

U:

Mean air velocity

Us :

Average velocity (Eq. 3)

Uinj :

Mean injection velocity

U’:

Turbulence velocity

W:

Stirring factor (Table 2)

Xo 2 :

Mole fraction oxygen

Xs :

Pre-exponential factor (Eq. 18)

Xo :

Pre-exponential factor (Eq. 19)

References

  1. M. Khan, Proc. lnstn. Mech. Engrs., Vol. 184, Pt. 3J (1969–70), pp. 36–43.

    Google Scholar 

  2. I. M. Khan and C. H. T. Wang, Proc. Instn. Mech. Engrs., C151171 (1971), pp. 293303.

    Google Scholar 

  3. I. M. Khan, G. Greeves and C. H. T. Wang, SAE Paper No. 730169, Part I, (1973).

    Google Scholar 

  4. I. M. Khan, G. Greeves and D. M. Probert, Proc. Instn. Mech. Engrs., C151171 (1971), pp. 205–217.

    Google Scholar 

  5. I. M. Khan and G. Greeves, SAE Paper No. 730169, Part 11, (1973).

    Google Scholar 

  6. N. A. Henein, Prog. Energy Combust. Sci., Vol. 1 (1976), pp. 165–207.

    Article  CAS  Google Scholar 

  7. R. P. Wilson, E. B. Muir and F. A. Pellicciotti, SAE Paper No. 740123, (1974).

    Google Scholar 

  8. P. N. Blumberg, G. A. Lavoie and R. J. Tabaczynski, Prog. Energy Combust. Sci., Vol. 5 (1979), pp. 123–167.

    Article  CAS  Google Scholar 

  9. H. Gg. Wagner, “Seventeenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1979), pp. 3–19.

    Google Scholar 

  10. K. H. Homann, Combust. Flame, Vol. 11 (1967), pp. 265–287.

    Article  CAS  Google Scholar 

  11. J. C. Street and A. Thomas, Fuel, 34 (1955), pp. 4–36.

    CAS  Google Scholar 

  12. H. B. Palmer and C. F. Cullis, “Chemistry and Physics of Carbon,” ed. P. L. Walker, Jr., Marcel-Dekkerinc., New York, (1965), pp. 265–325.

    Google Scholar 

  13. A. G. Gaydon and H. F. Wolfhard, “Flames–Their Structure, Radiation and Temperature,” Chapman and Hall Ltd., London, (1970).

    Google Scholar 

  14. J. S. McArragher and K. J. Tan, Combust. Sci. Tech., Vol. 5 (1972), pp. 257–261.

    Article  Google Scholar 

  15. J. Lahaye and G. Prado, “Chemistry and Physics of Carbon,” ed. P. L. Walker, Jr., and P. A. Thrower, Marcel-Dekker Inc., New York, (1978), pp. 167–295.

    Google Scholar 

  16. D. Anderton, U.S. Dept. of Transportation Report No. DOT-TSC-OST-76–57, (1977).

    Google Scholar 

  17. D. Broome and I. M. Khan, Proc. Instn. Mech. Engrs., C140 /71 (1971), pp. 185–197.

    Google Scholar 

  18. C. A. Amann, D. L. Stivender, S. L. Plee and J. S. MacDonald, SAE Paper No. 800251, (1980).

    Google Scholar 

  19. I. Glassman, “Combustion,” Academic Press, New York, (1977).

    Google Scholar 

  20. W. T. Lyn “Ninth Symposium ( International) on Combustion,” Academic Press, New York, (1963), pp. 1069–1082.

    Google Scholar 

  21. J. Rife and J. B. Heywood, SAE Paper No. 740948, (1974).

    Google Scholar 

  22. N. A. Chigier, Prog. Energy Combust. Sci., Vol. 2 (1976), pp. 97–114.

    Article  CAS  Google Scholar 

  23. Y. Onuma and M. Ogasawara, “Fifteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1975), pp. 453–465.

    Google Scholar 

  24. Y. Onuma, M. Ogasawara and T. Inoue, “Sixteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1977), pp. 561–567.

    Google Scholar 

  25. I. M. Khan and G. Greeves, “Heat Transfer in Flames,” ed. N. H. Afgan and J. M. Beer, John Wiley and Sons, New York, (1975), pp. 391–404.

    Google Scholar 

  26. V. K. Duggal, T. Priede and I. M. Khan, SAE Paper No. 780227, (1978).

    Google Scholar 

  27. H. H. Chiu and T. M. Liu, Combust. Sci. Tech., Vol. 17 (1977), pp. 127–142.

    Article  CAS  Google Scholar 

  28. R. W. Temple-Pediani, Proc. Instn. Mech. Engrs., Vol. 187 (1973), pp. 395–404.

    Google Scholar 

  29. R. J. Harnes, D. F. Merrion and H. S. Ford, SAE Paper No. 710671, (1971).

    Google Scholar 

  30. R. Pischinger and W. Cartellieri, SAE Paper No. 720756, (1972).

    Google Scholar 

  31. C. J. Walder, SAE Paper No. 730214, (1973).

    Google Scholar 

  32. S. R. Krause, D. F. Merrion and G. L. Green, SAE Paper No. 730213, (1973).

    Google Scholar 

  33. R. B. Melton, S. J. Lestz, R. D. Quillian and E. J. Rambie, “Fifteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1975), pp. 1389–1399.

    Google Scholar 

  34. G. P. Gross and K. E. Murphy, ASME Paper No. 78-DGP-26, (1978).

    Google Scholar 

  35. G. Greeves, I. M. Khan and G. Onion, “Sixteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1977), pp. 321–336.

    Google Scholar 

  36. G. Greeves, SAE Paper No. 790037, (1979).

    Google Scholar 

  37. W. F. Marshall and R. D. Fleming SAE Paper No. 710836, (1971).

    Google Scholar 

  38. R. F. Parker and J. W. Walker, SAE Paper No. 720755, (1972).

    Google Scholar 

  39. R. C. Bascom, L. C. Broering and D. E. Wulfhorst, SAE Paper No. 710484, (1971).

    Google Scholar 

  40. S. K. Ray and R. Long, Combust. Flame, Vol. 8 (1964), pp. 139–151.

    Article  CAS  Google Scholar 

  41. D. W. Golothan, SAE Paper No. 670092, (1967).

    Google Scholar 

  42. C. O. Miller, SAE Paper No. 670093, (1967).

    Google Scholar 

  43. G. McConnell and H. E. Howells, SAE Paper No. 670091, (1967).

    Google Scholar 

  44. H. Tsunemoto and H. Ishitani, SAE Paper No. 800030, (1980).

    Google Scholar 

  45. U. Bonne, K. H. Hamann and H. Gg. Wagner, “Tenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1965), pp. 503–512.

    Google Scholar 

  46. F. J. Wright, “Twelfth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1969), pp. 867–875.

    Google Scholar 

  47. J. J. Macfarlane, F. H. Holderness and F. S. E. Whitcher, Combust. Flame, Vol. 8 (1964), pp. 215–229.

    Article  Google Scholar 

  48. P. Dearden and R. Long, J. Appl. Chem., Vol. 18 (1968), pp. 243–251.

    Article  CAS  Google Scholar 

  49. I. S. McLintock, Combust. Flame, Vol. 12 (1968), pp. 217–225.

    Article  CAS  Google Scholar 

  50. K. P. Schug, Y. Manheimer-Timnat, P. Yaccarino and I. Glassman, Combust. Sci. Tech. Vol. 22 (1980), pp. 235–250

    Article  CAS  Google Scholar 

  51. J. M. Jones and J. L. J. Rosenfeld, Combust. Flame, Vol. 19 (1972), pp. 427–434.

    Article  CAS  Google Scholar 

  52. F. J. Wright, Fuel, Vol. 53 (1974), pp. 232–235.

    Article  CAS  Google Scholar 

  53. B. B. Chakraborty and R. Long, Combust. Flame, Vol. 12 (1968), pp. 469–476.

    Article  CAS  Google Scholar 

  54. I. Glassman and P. Yaccarino, “Eighteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, to be published (1981).

    Google Scholar 

  55. B. B. Chakraborty and R. Long, Combust. Flame, Vol. 12 (1968), pp. 226–242.

    Article  CAS  Google Scholar 

  56. R. L. Schalla and G. E. McDonald, “Fifth Symposium ( International) on Combustion,” Reinhold, New York, (1955), pp. 316–324.

    Google Scholar 

  57. Glassman and P. Yaccarino, Combust. Sci. Tech., to be published (1981).

    Google Scholar 

  58. T. Kadota, H. Hiroyasu and A. Furazandehmehr, Combust. Flame, Vol. 29 (1977), pp. 67–75.

    Article  CAS  Google Scholar 

  59. A. Sjogren, “Fourteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1973), pp. 919–927.

    Google Scholar 

  60. P. W. Cooper, R. Kamo, C. J. Marek and C. W. Solbrig, Amer. Petrol. Inst. Publ. No. 1723, (1964).

    Google Scholar 

  61. S. R. Gollahalli, Combust. Flame, Vol. 34 (1979), pp. 141–151.

    Article  CAS  Google Scholar 

  62. A. A. Quader, SAE Paper No. 710009, (1971).

    Google Scholar 

  63. J. H. Tuttle, M. B. Colket, R. W. Bilger and A. M. Mellor, “Sixteenth Symposium (International) on Combustion,” The Combustion Institute, (1977), pp. 209–219.

    Google Scholar 

  64. R. F. Sawyer, N. P. Cernansky and A. K. Oppenheim, “Atomospheric Pollution by Aircraft Engines,” AGARD CP-125, Paper No. 22, (1973).

    Google Scholar 

  65. R. M. Washam and A. M. Mellor, AIAA J. Aircraft, Vol. 16 (1979), pp. 626–631.

    Article  Google Scholar 

  66. A. M. Mellor, “Semi-Empirical Correlations for Gas Turbine Emissions, Ignition and Flame Stablization,” Paper Presented at AGARD Propulsion and Energetics Panel, 54th Specialists’ Meeting on Combustion Modeling, (1979).

    Google Scholar 

  67. A. M. Mellor and R. M. Washam, ASME Paper No. 79-GT-194, (1979).

    Google Scholar 

  68. H. Hiroyasu and M. Arai, “Development and Use of Spray Combustion Modeling to Predict Diesel Engine Efficiency and Pollutant Emissions,” Paper Presented at Fifth International Automotive Propulsion Systems Symposium, (1980).

    Google Scholar 

  69. H. Hiroyasu and T. Kadota, SAE Paper No. 760129, (1976).

    Google Scholar 

  70. S. V. Patankar and D. B. Spalding, “Fourteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1973), pp. 605–614.

    Google Scholar 

  71. A. D. Gosman, W. M. Pun, A. K. Runchal, D. B. Spalding and R. Wolfshtein, “Heat and Mass Transfer in Recirculating Flows,” Academic Press, London, (1969).

    Google Scholar 

  72. P. Hutchinson, E. E. Khalil, J. H. Whitelaw and G. Wigley, Journal of Heat Transfer, ASME, C98 (1976), pp. 276–283.

    Article  CAS  Google Scholar 

  73. B. E. Launder and D. B. Spalding, “Mathematical Models of Turbulence,” Academic Press, London, (1972).

    Google Scholar 

  74. R. W. Bilger, Prog. Energy Combust. Sci., Vol. 1 (1976), pp. 87–109.

    Article  CAS  Google Scholar 

  75. B. F. Magnussen, “Fifteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1975), pp. 1415–1425.

    Google Scholar 

  76. W. H. Dalzell, G. C. Williams and H. C. Hottel, Combust. Flame, Vol. 14 (1970), pp. 161–170.

    Article  Google Scholar 

  77. B. F. Magnussen and B. J. Hjertager, “Sixteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1977), pp. 719–729.

    Google Scholar 

  78. P. A. Tesner, T. D. Snegiriova and V. G. Knorre, Combust. Flame, Vol. 17 (1971), pp. 253–260.

    Article  CAS  Google Scholar 

  79. P. A. Tesner, E. 1. Tsygankova, L. P. Guilazetdinor, V. P. Zuyer and G. V. Loshakova, Combust. Flame, Vol. 17 (1971), pp. 279–285.

    Article  CAS  Google Scholar 

  80. B. F. Magnussen, B. H. Hjertager, J. G. Olsen and D. Bhaduri, “Seventeenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1979), pp. 1383–1393.

    Google Scholar 

  81. H. A. Becker and S. Yamazaki, “Sixteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1977), pp. 681–691.

    Google Scholar 

  82. H. A. Becker, H.C. Hottel and G. C. Williams, “Ninth Symposium ( International) on Combustion,” Academic Press, New York, (1963), pp. 7–20.

    Google Scholar 

  83. H. A. Becker, H. C. Hottel and G. C. Williams, “Tenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1965), pp. 1253–1263.

    Google Scholar 

  84. S. T. R. Rao and R. J. Essenhigh, “Thirteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1971), pp. 603–615.

    Google Scholar 

  85. M. A. Zeinalov, M. Kuwata and R. J. Essenhigh, “Fourteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1973), pp. 575–583.

    Google Scholar 

  86. R. J. Essenhigh, “Combustion Technology: Some Modern Developments,” Academic Press, New York, (1974), pp. 373–415.

    Google Scholar 

  87. L. A. Vulis, “Thermal Regimes of Combustion,” McGraw-Hill, New York, (1960).

    Google Scholar 

  88. J. Swithenbank, I. Poll, M. W. Vincent and D. D. Wright, “Fourteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1973), pp. 627–638.

    Google Scholar 

  89. B. F. Magnussen, “Fourteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1973), pp. 553–566.

    Google Scholar 

  90. N. A. Chigier, Prog. Energy Combust. Sci., 3 (1977), pp. 175–189.

    Article  CAS  Google Scholar 

  91. J. E. Bennethum, J. N. Mattavi and R. R. Toepel, SAE Paper No. 750849, (1975).

    Google Scholar 

  92. N. A. Chigier, “Experimental Diagnostics in Gas Phase Combustion Systems,” AIAA, New York, (1977), pp. 337–356.

    Google Scholar 

  93. A. Ungut, A. J. Yule, D. S. Taylor and N. A. Chigier, AIAA J. Energy, Vol. 2 (1978), pp. 330–336.

    Article  Google Scholar 

  94. N. A. Chigier, A. Ungut and A. J. Yule, “Seventeenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1979), pp. 315–324.

    Google Scholar 

  95. D. L. Hartley, “Experimental Diagnostics in Gas Phase Combustion Systems,” AIAA, New York, (1977), pp. 467–477.

    Google Scholar 

  96. J. H. Tuttle, R. A. Shisler, R. W. Bilger and A. M. Mellor, Purdue University Combustion Laboratory Report PURDU-CL-75–04, (1975).

    Google Scholar 

  97. J. H. Tuttle, M. B. Colket and A. M. Mellor, Purdue University Combustion Laboratory Report PURDU-CL-76–05, (1976).

    Google Scholar 

  98. A. M. Mellor, Prog. Energy Combust. Sci., Vol. 1 (1976), pp. 111–113.

    Article  CAS  Google Scholar 

  99. W. J. Dodds, M. B. Colket and A. M. Mellor, Purdue University Combustion Laboratory Report PURDU-CL-76–06, (1976).

    Google Scholar 

  100. T. Kadota, N. A. Henein and D. U. Lee, “A New Approach to Study the Formation of Soot Particulates in Diesel Sprays,” Paper Presented at the Spring Technical Meeting, Combustion Institute Central States Section, (1980).

    Google Scholar 

  101. G. M. Faeth, Prog. Energy Combust. Sci., Vol. 3 (1977), pp. 191–224.

    Article  CAS  Google Scholar 

  102. K. T. Rhee, P. S. Myers and O. A. Uyehara, SAE Paper No. 780226, (1978).

    Google Scholar 

  103. D. R. Nightingale, SAE Paper No. 750848, (1975).

    Google Scholar 

  104. W. D. Whitehouse, E. Clough and P. S. Roberts, SAE Paper No. 770409, (1977).

    Google Scholar 

  105. Y. Matsui, T. Kamimoto and S. Matsuoka, SAE Paper No. 790491, (1979).

    Google Scholar 

  106. Y. Matsui, T. Kamimoto and S. Matsuoka, SAE Paper No. 800970, (1980).

    Google Scholar 

  107. S. Matsuoka, T. Kamimoto, Y. Matsui and Y. Aogi, “An Introduction to the Research on Combustion Mechanism and Formation-Extinction Processes of NOx and Soot-Particulates in a Direct Injection Diesel Engine,” Paper Presented at the Thirteenth International Congress of Automobile Technology, (1980).

    Google Scholar 

  108. C. J. Morris and J. C. Dent, Proc. Inst. Mech. Engrs., 19047 /76, (1976), pp. 503–513.

    Article  Google Scholar 

  109. F. Brand!, I. Reverencic, W. Cartellieri and J. C. Dent, SAE Paper No. 790040, (1979).

    Google Scholar 

  110. J. C. Dent, SAE Paper No. 800092, (1980).

    Google Scholar 

  111. G. Greeves, SAE Paper No. 790037, (1979).

    Google Scholar 

  112. J. S. MacDonald, S. L. Plee, J. B. D’Arcy and R. M. Schreck, SAE Paper No. 800185, (1980).

    Google Scholar 

  113. R. L. Williams and D. P. Chock, “Characterization of Diesel Particulate Exposure,” Paper Presented to the International Symposium on Health Effects of Diesel Engine Emissions, December 3, Cincinnati, Ohio,(1979).

    Google Scholar 

  114. D. R. Lancaster, R. B. Krieger and J. H. Lienesch, SAE Paper No. 750026, (1975).

    Google Scholar 

  115. R. V. Fischer and J. P. Macey, SAE Paper No. 750028, (1975).

    Google Scholar 

  116. L. E. Frisch, J. H. Johnson and D. G. Leddy, SAE Paper No. 790417, (1979).

    Google Scholar 

  117. F. Black and L. High, SAE Paper No. 790422, (1979).

    Google Scholar 

  118. F. J. Verkamp, A. J. Verdouw and J. G. Tomlinson, AIAA J. Aircraft, Vol. 11 (1974), pp. 340–344.

    Article  Google Scholar 

  119. S. Gordon and B. J. McBride, NASA Report No. SP-273, (1971).

    Google Scholar 

  120. L. S. Caretto, Prog. Energy Combust. Sci., Vol. 1 (1976), pp. 47–71.

    Article  CAS  Google Scholar 

  121. J. P. Appleton and J. B. Heywood, “Fourteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1973), pp. 777–786.

    Google Scholar 

  122. D. E. Jensen and G. A. Jones, Combust. Flame, Vol. 32 (1978), pp. 1–34.

    Article  CAS  Google Scholar 

  123. J. B. Heywood, “Fifteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1975), pp. 1191–1211.

    Google Scholar 

  124. P. Blumberg and J. T. Kummer, Combust. Sci. Tech., Vol. 4 (1971), pp. 73–95.

    Article  CAS  Google Scholar 

  125. W. R. Aiman, “Fourteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1973), pp. 861–868.

    Google Scholar 

  126. H. L. Green and W. R. Lane, “Particulate Clouds: Dusts, Smokes and Mists,” D. VanNostrand Co., Princeton, New Jersey, (1957).

    Google Scholar 

  127. K. B. Lee, M. W. Thring and J. M. Beer, Combust. Flame, Vol. 6 (1962), pp. 137–145.

    Article  CAS  Google Scholar 

  128. P. A. Tesner and A. M. Tsibulevsky, Combust., Expl. and Shock Waves, 3 (1969), pp. 163–167.

    Article  Google Scholar 

  129. C. Park and J. P. Appleton, Combust. Flame, Vol. 20 (1973), pp. 369–379.

    Article  CAS  Google Scholar 

  130. J. Nagle and R. F. Strickland-Constable, “Proceedings of the Fifth Carbon Conference,” 1 (1962), pp. 154–164.

    CAS  Google Scholar 

  131. F. J. Wright, “Fifteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1975), pp. 1449–1460.

    Google Scholar 

  132. C. P. Fenimore and G. W. Jones, J. Phys. Chem., Vol. 71 (1967), pp. 593–597.

    Article  CAS  Google Scholar 

  133. K. G. Neoh, J. B. Howard and A. F. Sarofim, “Particulate Carbon–Formation During Combustion,” Plenum Press, New York, this volume, p. 261.

    Google Scholar 

  134. P. A. Tesner and A. M. Tsibulevsky, Combust. Flame, Vol. 11 (1967), pp. 227–233.

    Article  CAS  Google Scholar 

  135. J. P. Appleton, “Atmospheric Pollution by Aircraft Engines,” AGARD CP-125, Paper No. 20, (1973).

    Google Scholar 

  136. N. M. Laurendeau, Prog. Energy Combust. Sci., Vol. 4 (1978), pp. 221–270.

    Article  CAS  Google Scholar 

  137. R. M. Fristrom and A. A. Westenberg, “Flame Structure,” McGraw-Hill, New York, (1965).

    Google Scholar 

  138. H. Tennekes and J. L. Lumley, “A First Course in Turbulence,” The MIT Press, Cambridge, Massachusetts, (1972).

    Google Scholar 

  139. J. H. Kent and R. W. Bilger, “Fourteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1973), pp. 615–625.

    Google Scholar 

  140. D. R. Lancaster, SAE Paper No. 760159, (1976).

    Google Scholar 

  141. S. Ohigashi, Y. Hamamoto and S. Tanabe, Proc. Instn. Mech. Engrs., C134 /71, (1971), pp. 129–136.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Plee, S.L., Ahmad, T., Myers, J.P., Siegla, D.C. (1981). Effects of Flame Temperature and Air-Fuel Mixing on Emission of Particulate Carbon from a Divided-Chamber Diesel Engine. In: Siegla, D.C., Smith, G.W. (eds) Particulate Carbon. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6137-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6137-5_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6139-9

  • Online ISBN: 978-1-4757-6137-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics