Human Papillomaviruses and Cancer: A Retrospective

  • Harald zur Hausen


The discovery in the second part of the last century of bacteria as causative agents of numerous contagious diseases, including anthrax, diphtheria, typhoid fever and plague, and a widespread disease of high morbidity and mortality—tuberculosis (whose infectious origin had been disputed at that time), created an atmosphere of expectations. This led to the anticipation that even other diseases without epidemiological evidence for an infectious etiology, as for example, cancer and rheumatic fever, may also be caused by infections.


Cervical Cancer Human Papilloma Virus Genital Wart Human Papilloma Virus Nonmelanoma Skin Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iwanowski D. Über die Mosaikkrankheit der Tabakpflanze. Bull Acad Imp Sci St Petersburg 1894; 3 (35): 67–70.Google Scholar
  2. 2.
    Beijerinck MW. Über ein Contagium vivum fluidum als Ursache der Fleckenkrankheit der Tabakblätter. Verhandl. Koninkl Akad Wetenschappen te Amsterdam 1898; 6: 3–22.Google Scholar
  3. 3.
    McFadyan J, Hobday F. Note on the experimental “transmission of warts in the dog”. J Comp Pathol Ther 1898; 11: 341–349.Google Scholar
  4. 4.
    Ciuffo G. Innesto positivo con filtrado di verrucae volgare. G Ital Mal Venereol 1907; 48: 12–18.Google Scholar
  5. 5.
    Rowson KEK, Mahy BWJ. Human papova (wart) virus. Bacteriol Rev 1967; 31: 110–131.PubMedGoogle Scholar
  6. 6.
    Shope RE. Infectious papillomatosis of rabbits. J Exp Med 1933; 58: 607–627.PubMedCrossRefGoogle Scholar
  7. 7.
    Rous P, Beard JW. Carcinomatous changes in virus-induced papillomas of the skin of the rabbit. Proc Soc Exp Biol Med 1934; 32: 578–580.Google Scholar
  8. 8.
    Rous P, Beard JW. The progression to carcinoma of virus-induced rabbit papilloma (Shope). J Exp Med 1935; 62: 523–548.PubMedCrossRefGoogle Scholar
  9. 9.
    Syverton JT, Berry GP. Carcinoma in the cottontail rabbit following spontaneous virus papilloma (Shope). Proc Soc Exp Biol Med 1935; 33: 300–400.Google Scholar
  10. 10.
    Rous P, Kidd JG. The carcinogenic effect of a papillomavirus on the tarred skin of rabbits. I. Description of the phenomenon. J Exp Med 1938; 67: 399–422.PubMedCrossRefGoogle Scholar
  11. 11.
    Rous P, Friedewald WF. The effect of chemical carcinogens on virus-induced rabbit papillomas. J Exp Med 1944; 79: 511–537.PubMedCrossRefGoogle Scholar
  12. 12.
    Strauss MJ, Shaw EW, Bunting H et al. “Crystalline” virus-like particles from skin papillomas characterized by intranuclear inclusion bodies. Proc Soc Exp Biol Med 1949; 72: 46–50.PubMedGoogle Scholar
  13. 13.
    Crawford LV, Crawford EM. A comparative study of polyoma and papilloma viruses. Virology 1963; 21: 258–263.PubMedCrossRefGoogle Scholar
  14. 14.
    Ito Y, Evans CA. Induction of tumors in domestic rabbits with nucleic acid preparations from partially purified Shope papilloma virus and from extracts of the papillomas of domestic and cotton tail rabbits. J Exp Med 1961; 114: 485–491.PubMedCrossRefGoogle Scholar
  15. 15.
    Han RF, Breitburd F, Marche PN et al. Linkage of regression and malignant conversion of rabbit viral papillomas to MHC class II genes. Nature 1992; 356: 66–68.PubMedCrossRefGoogle Scholar
  16. 16.
    Zeltner R, Borenstein LA, Wettstein FO et al. Changes in RNA expression pattern during malignant progression of cottontail rabbit papillomavirus-induced tumors in rabbits. J Virol 1994; 68: 3620–2630.PubMedGoogle Scholar
  17. 17.
    Lin YL, Borenstein LA, Ahmed R et al. Cottontail rabbit papillomavirus L1 protein-based vaccines: protection is achieved only with a full-length, nondenatured product. J Virol 1993; 67: 4154–4163.PubMedGoogle Scholar
  18. 18.
    Breitburd F, Kirnbauer R, Hubbert NL et al. Immunization with virus-like particles from cottontail rabbit papillomavirus (CRPV) can protect against experimental CRPV infection. J Virol 1995; 69: 3959–3963.PubMedGoogle Scholar
  19. 19.
    Magelhaes O. Verruga dos bovideos. Brasil-Medico 1920; 34: 430–431.Google Scholar
  20. 20.
    Olson C, Cook RH. Cutaneous sarcoma-like lesions of the horse induced by the agent of bovine papilloma. Proc Soc Exp Biol Med 1951; 77: 281–284.PubMedGoogle Scholar
  21. 21.
    Olson C, Pamukcu AM, Brobst DF et al. A urinary bladder tumor induced by a bovine cutaneous papilloma agent. Cancer Res 1959; 19: 779–782.PubMedGoogle Scholar
  22. 22.
    Friedmann JC, Levy JP, Lasnaret J et al. Induction de fibromes sous-cutanés chez le hamster doré par inoculation d’extrait acellulaires de papillomes bovins et leur transformation maligne par greffes isologues. Compt Rend Acad Sci (Paris) 1963; 257: 2328–2331.Google Scholar
  23. 23.
    Boiron M, Levy JP, Thomas M et al. Some properties of bovine papilloma virus. Nature 1964; 201: 423–424.PubMedCrossRefGoogle Scholar
  24. 24.
    Black PH, Hartley JW, Rowe WP et al. Transformation of bovine tissue culture cells by bovine papilloma virus. Nature 1963; 199: 1016–1018.PubMedCrossRefGoogle Scholar
  25. 25.
    Thomas M, Levy JP, Tanzer J et al. Transformation in vitro de cellules de peau de veau embryonnaire sous l’action d’extraits acellulaires de papillomes bovins. Compt Rend Acad Sci (Paris) 1963; 257: 2155–2158.Google Scholar
  26. 26.
    Lancaster WD, Olson C. Demonstration of two distinct classes of bovine papilloma virus. Virology 1978; 89: 371–379.CrossRefGoogle Scholar
  27. 27.
    Lowy DR, Dvoretzky I, Shober R et al. In vitro tumorigenic transformation by a defined subgenomic fragment of bovine papilloma virus DNA. Nature 1980; 287: 72–74.PubMedCrossRefGoogle Scholar
  28. 28.
    Chen EY, Howley PM, Levinson AD et al. The primary structure and genetic organization of the bovine papillomavirus (BPV) type 1 genome. Nature 1982; 299: 529–534.PubMedCrossRefGoogle Scholar
  29. 29.
    Jarrett WFH. Bracken fern and papilloma virus in bovine alimentary cancer. Brit Med Bull 1980; 36: 79–81.PubMedGoogle Scholar
  30. 30.
    Almeida JD, Goffe AP. Antibody to wart virus in human sera demonstrated by electron microscopy and precipitin tests. Lancet 1965; 2: 1205–1207.PubMedCrossRefGoogle Scholar
  31. 31.
    zur Hausen H, Meinhof W, Scheiber W et al. Attempts to detect virus-specific DNA sequences in human tumors: I. Nucleic acid hybridizations with complementary RNA of human wart virus. Int J Cancer 1974; 13: 650–656.PubMedCrossRefGoogle Scholar
  32. 32.
    zur Hausen H, Schulte-Holthausen H, Wolf H et al. Attempts to detect virus-specific DNA in human tumors: II. Nucleic acid hybridizations with complementary RNA of human herpes group viruses. Int J Cancer 1974; 13: 657–664.PubMedCrossRefGoogle Scholar
  33. 33.
    Gissmann L, zur Hausen H. Human papilloma viruses: physical mapping and genetic heterogeneity. Proc Nat Acad Sci USA 1976; 73: 1310–1313.PubMedCrossRefGoogle Scholar
  34. 34.
    Gissmann L, Pfister H, zur Hausen H. Human papilloma viruses (HPV): Characterization of four different isolates. Virology 1977; 76: 569–580.PubMedCrossRefGoogle Scholar
  35. 35.
    Orth G, Favre M, Croissant O. Characterization of a new type of human papillomavirus that causes skin warts. J Virol 1977; 24: 108–120.PubMedGoogle Scholar
  36. 36.
    Coggin JR, zur Hausen H. Workshop on papilloma viruses and cancer. Cancer Res 1978; 39: 545–546.Google Scholar
  37. 37.
    de Villiers EM. Human pathogenic papillomaviruses: An update. In: zur Hausen H, ed. Current Topics in Microbiology and Immunology. Berlin-Heidelberg: Springer Verlag, 1994; 86: 1–12.Google Scholar
  38. 38.
    Shamanin V, Glover M, Rausch C et al. Specific types of human papillomavirus found in benign proliferations and carcinomas of the skin in immunosuppressed patients. Cancer Res 1994; 54: 4610–4613.PubMedGoogle Scholar
  39. 39.
    Van Ranst M, Fuse A, Fiten P et al. Human papillomavirus type 13 and pygmy chimpanzee papillomavirus type 1: comparison of the genome organizations. Virology 1992; 190: 587–596.PubMedCrossRefGoogle Scholar
  40. 40.
    Bernard HU, Chan SY, Delius H. Evolution of papillomaviruses. Curr Topics Microbiol Immunol 1994; 186: 33–54.CrossRefGoogle Scholar
  41. 41.
    Lewandowsky F, Lutz W. Ein Fall einer bisher nicht beschriebenen Hauterkrankung (Epidermodysplasia verruciformis). Arch Dermatol Syph (Berlin) 1922; 141: 193–203.Google Scholar
  42. 42.
    Schellender F, Fritsch F. Epidermodysplasia verruciformis. Neue Aspekte zur Symptomatologie und Pathogenese. Dermatologica 1970; 140: 251–259.CrossRefGoogle Scholar
  43. 43.
    Ruiter M and van Mullem PJ. Behaviour of virus in malignant degeneration of skin lesions in epidermodysplasia verruciformis. J Invest Dermatol 1970; 54: 324–331.PubMedCrossRefGoogle Scholar
  44. 44.
    Jablonska S, Dabrowski J, Jakubowicz K. Epidermodysplasia verruciformis as a model in studies on the role of papovaviruses in oncogenesis. Cancer Res 1972; 32: 583–589.PubMedGoogle Scholar
  45. 45.
    Lutzner MA. Epidermodysplasia verruciformis. An autosomal recessive disease characterized by viral warts and skin cancer. Bull Cancer Paris 1978; 65: 169–182.PubMedGoogle Scholar
  46. 46.
    Lutz W. A propos de l’epidermodysplasie verruciforme. Dermatologica 1946; 92: 30–43.PubMedCrossRefGoogle Scholar
  47. 47.
    Jablonska S, Millewski B. Zur Kenntnis der Epidermodysplasia verruciformis Lewandowsky-Lutz. Dermatologica 1957; 115: 1–22.PubMedCrossRefGoogle Scholar
  48. 48.
    Ruiter M, van Mullem PJ. Demonstration by electronmicroscopy of an intranuclear virus in epidermodysplasia verruciformis. J Invest Dermatol 1966 Sep; 47 (3): 247–52.PubMedGoogle Scholar
  49. 49.
    Yabe Y, Okamoto T, Okmori S et al. Virus particles in epidermodysplasia verruciformis with carcinoma. Dermmatologica 1969; 139: 161–164.CrossRefGoogle Scholar
  50. 50.
    Delescluse C, Prunieras M, Regnier M et al. Epidermodysplasia verruciformis. I. Electron microscope autoradiography and tissue culture studies. Arch Dermatol Forsch 1972; 242: 202–215.PubMedCrossRefGoogle Scholar
  51. 51.
    Orth G, Jablonska S, Jarzabek-Chorzelska M et al. Characteristics of the lesions and risk of malignant conversion as related to the type of the human papillomavirus involved in epidermodysplasia verruciformis. Cancer Res 1979; 39: 1074–1082.PubMedGoogle Scholar
  52. 52.
    Preston DS, Stern RS. Nonmelanoma cancers of the skin. New Engl J Med 1992; 327: 1649–1662.PubMedCrossRefGoogle Scholar
  53. 53.
    Rees J. Genetic alterations in nonmelanoma skin cancer. J. Invest Dermatol 1994; 103: 747–750.PubMedCrossRefGoogle Scholar
  54. 54.
    Lutzner MA, Orth G, Dutronquay V et al. Detection of human papillomavirus type 5 DNA in skin cancers of an immunosuppressed renal allograft recipient. Lancet 1983; 2: 422–424.PubMedCrossRefGoogle Scholar
  55. 55.
    Obalek S, Favre M, Szymanczyk J et al. Human papillomavirus (HPV) types specific of epidermodysplasia verruciformis in warts induced by HPV 3 or HPV3-related types in immunosuppressed patients. J Invest Dermatol 1992; 98: 936–941.PubMedCrossRefGoogle Scholar
  56. 56.
    Van der Leest RJ, Zachow KR, Ostrow RS et al. Human papillomavirus heterogeneity in 36 renal transplant recipients. Arch Dermatol 1986; 123: 354–357.Google Scholar
  57. 57.
    Euvrard S, Chardonnet Y, Pouteil-Noble C et al. Association of skin malignancies with various and multiple carcinogenic and noncarcinogenic human papillomaviruses in renal transplant recipients. Cancer 1993; 72: 2198–2206.PubMedCrossRefGoogle Scholar
  58. 58.
    Stark LA, Arends MJ, McLaren KM et al. Prevalence of human papillomavirus DNA in cutaneous neoplasms from renal allograft recipients supports a possible viral role in tumor promotion. Brit J Cancer 1994; 69: 222–229.PubMedCrossRefGoogle Scholar
  59. 59.
    Barr BB, Benton EC, McLaren K et al. Human papilloma virus infection and skin cancer in renal allograft recipients. Lancet 1989; 1: 124–129.PubMedCrossRefGoogle Scholar
  60. 60.
    Purdie KJ, Sexton CJ, Proby CM et al. Malignant transformation of cutaneuos lesions in renal allograft patients: a role for human papillomavirus. Cancer Res 1993; 53: 5328–5333.PubMedGoogle Scholar
  61. 61.
    Soler C, Chardonnet Y, Allibert P et al. Detection of mucosal human papillomavirus types 6/11 in cutaneous lesions from transplant recipients. J Invest Dermatol 1993; 101: 286–291.PubMedCrossRefGoogle Scholar
  62. 62.
    Berkhout RJM, Tieben LM, Smits HL et al. Detection and typing of epidermodysplasia verruciformis-associated human papillomavirus types in cutaneous cancers from renal transplant recipients: a nested approach. J Clin Microbiol 1965; 33: 690–695.Google Scholar
  63. 63.
    Grimmel M, de Villiers EM, Pawlita M et al. Characterization of a new human papillomavirus type (HPV 41) isolated from dissiminated warts and the detection of closely related sequences in some squamous cell carcinomas. Int J Cancer 1988; 41: 5–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Kawashima M, Favre M, Obalek S et al. Premalignant lesions and cancers of the skin in the general population: evaluation of the role of human papillomaviruses. J Invest Dermatol 1990; 95: 537–42.PubMedCrossRefGoogle Scholar
  65. 65.
    Moy RL, Eliezri YD, Nuovo GJ. HPV DNA in periungual SSC. J Am Med Assoc 1989; 261: 2669–2673.CrossRefGoogle Scholar
  66. 66.
    Eliezri YD, Silverstein SJ, Nuovo GJ. Occurrence of human papillomavirus type 16 DNA in cutaneous squamous and basal cell neoplasms. J Am Acad Dermatol 1990; 23: 836–842.PubMedCrossRefGoogle Scholar
  67. 67.
    Rigoni-Stern D. Fatti statistici relativialle malatia cancerose. G Sery Prog Pathol Therap 1842; 2: 507–517.Google Scholar
  68. 68.
    Rotkin ID. A comparison review of key epidemiological studies in cervical cancer related to current searches for transmissible agents. Cancer Res 1973; 33: 1353–1367.PubMedGoogle Scholar
  69. 69.
    zur Hausen H. Condylomata acuminata and human genital cancer. Cancer Res 1976; 36: 530.Google Scholar
  70. 70.
    zur Hausen H. Human papillomaviruses and their possible role in squamous cell carcinomas. Current Topics Microbiol Immunol 1977; 78: 1–30.CrossRefGoogle Scholar
  71. 71.
    Meisels A, Fortin R. Condylomatous lesions of the cervix and vagina. I. Cytological patterns. Act Cytologica 1976; 20: 505–509.Google Scholar
  72. 72.
    Meisels A, Roy M, Fortier M et al. Human papillomavirus infection of the cervix: the atypical condyloma. Act Cytologica 1981; 25: 7–16.Google Scholar
  73. 73.
    Gissmann L, zur Hausen H. Partial characterization of viral DNA from human genital warts (condylomata acuminata). Int J Cancer 1980; 25: 605–609.PubMedCrossRefGoogle Scholar
  74. 74.
    de Villiers EM, Gissmann L, zur Hausen H. Molecular cloning of viral DNA from human genital warts. J Virol 1981; 40: 932–935.PubMedGoogle Scholar
  75. 75.
    Gissmann L, Diehl V, Schultz-Coulon H et al. Molecular cloning and characterization of human papillomavirus DNA from a laryngeal papilloma. J Virol 1982; 44: 393–400.PubMedGoogle Scholar
  76. 76.
    Durst, M., Gissmann, L., Ikenberg, H., and zur Hausen, H. 1983. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Nat Acad Sci USA 80, 3812–3815.PubMedCrossRefGoogle Scholar
  77. 77.
    Boshart M, Gissmann L, Ikenberg H et al. A new type of papillomavirus DNA, its presence in genital cancer and in cell liness derived from genital cancer. EMBO J 1984; 3: 1151–1157.PubMedGoogle Scholar
  78. 78.
    Ikenberg H, Gissmann L, Gross G et al. Human papillomavirus type 16 related DNA in genital Bowen’s disease and in Bowenoid papulosis. Int J Cancer 1983; 32: 563–564.PubMedCrossRefGoogle Scholar
  79. 79.
    Schwarz E, Freese K, Gissmann L et al. Structure and transcription of human papillomvirus sequences in cervical carcinoma cells. Nature 1985; 314: 111–114.PubMedCrossRefGoogle Scholar
  80. 80.
    zur Hausen H. Cell-virus gene balance hypothesis of carcinogenesis. Behring Inst Mitt 1977; 61: 23–30.Google Scholar
  81. 81.
    zur Hausen H. The role of viruses in human tumors. In: Klein G, Weinhouse S, eds. Advances in Cancer Res 1980; 33: 77–107.Google Scholar
  82. 82.
    zur Hausen H. Intracellular surveillance of persisting viral infections: Human genital cancer resulting from failing cellular control of papillomavirus gene expression. Lancet 1986; 2: 489–491.PubMedCrossRefGoogle Scholar
  83. 83.
    zur Hausen H. Genital papillomavirus infections. In: Rigby PWJ, Wilkie NM, eds. Viruses and Cancer. Cambridge: Cambridge University Press 1986; 83–90.Google Scholar
  84. 84.
    zur Hausen H. Papillomaviruses in anogenital cancer: A model to understand the role of viruses in human cancers. Cancer Res 1989; 49: 4677–4681.PubMedGoogle Scholar
  85. 85.
    Yasumoto S, Burckhardt AL, Doninger J et al. Human papillomavirus type 16 DNA induced malignant transformation of NIH3T3 cells. J Virol 1986; 57: 572–577.PubMedGoogle Scholar
  86. 86.
    Durst M, Dzarlieva-Petrusevska RT, Boukamp P et al. Molecular and cytogenetic analysis of immortalized human primary keratinocytes obtained after transfection with human papillomavirus type 16 DNA. Oncogene 1987; 1: 251–256.PubMedGoogle Scholar
  87. 87.
    Pirisi L, Yasumoto S, Fellery M et al. Transformation of human fibroblasts and keratinocytes with human papillomavirus type 16 DNA. J Virol 1987; 61: 1061–1066.PubMedGoogle Scholar
  88. 88.
    Manger K, Phelps WC, Bubb V et al. The E6 and E7 genes of human papillomavirus type 16 are necessary and sufficient for transformation of primary human keratinocytes. J Virol 1989; 63: 4417–4423.Google Scholar
  89. 89.
    Halbert CL, Demers GW, Galloway DA. The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J Virol 1991; 65: 473–478.PubMedGoogle Scholar
  90. 90.
    Band V, De Caprio JA, Delmolina L et al. Loss of p53 protein in human papillomavirus type 16 E6-immortalized human mammary epithelial cells. J Virol 1991; 65: 6671–6676.PubMedGoogle Scholar
  91. 91.
    von Knebel Doeberitz M, Oltersdorf T, Schwarz E et al. Correlation of modified human papillomavirus early gene expression with altered growth properties in C4–1 cervical carcinoma cells. Cancer Res 1988; 48: 3780–3786.Google Scholar
  92. 92.
    von Knebel Doeberitz M, Rittmüller C, zur Hausen H et al. Inhibition of tumorigenicity of cervical cancer cells in nude mice by HPV E6–E7 antisense RNA. Int J Cancer 1992; 51: 831–834.CrossRefGoogle Scholar
  93. 93.
    von Knebel Doeberitz M, Rittmüller C, Aengeneyndt F et al. Reversible repression of papillomavirus oncogene expression in cervical carcinoma cells: consequences for the phenotype and E6-p53 and E7pRB interactions. J Virol 1994; 68: 2811–2821.Google Scholar
  94. 94.
    Pereira-Smith OM, Smith JR. Expression of SV40 antigen in finite lifespan hybrids of normal and SV40-transformed fibroblasts. Somatic Cell Genetics 1981; 7: 411–421.PubMedCrossRefGoogle Scholar
  95. 95.
    Chen TM, Pecoraro G, Defendi V. Genetic analysis of in vitro progression of human papillomavirus-transfected human cervical cells. Cancer Res 1993; 53: 1167–1171.PubMedGoogle Scholar
  96. 96.
    zur Hausen H. Disrupted dichotomous intracellular control of human papillomavirus infection in cancer of the cervix. Lancet 1994; 343: 955–957.PubMedCrossRefGoogle Scholar
  97. 97.
    Rösl F, Durst M, zur Hausen H. Selective suppression of human papillomavirus transcription in nontumorigenic cells by 5-azacytidine. EMBO J 1988; 7: 1321–1328.PubMedGoogle Scholar
  98. 98.
    Rösl F, Achtstetter T, Hutter KJ et al. Extinction of the HPV 18 upstream regulatory region in cervical carcinoma cells after fusion with nontumorigenic human keratinocytes under nonselective conditions. EMBO J 1991; 10: 1337–1345.PubMedGoogle Scholar
  99. 99.
    Rösl F, Lengert M, Albrecht J et al. Differential regulation of the JE gene encoding the monocyte chemoattractant protein (MCP-1) in cervical carcinoma cells and derived hybrids. J Virol 1994; 68: 2142–2150.PubMedGoogle Scholar
  100. 100.
    Bartsch D, Boye B, Baust C et al. Retinoic acid-mediated repression of human papillomavirus 18 transcription and different ligand regulation of the retinoic acid receptor ß gene in nontumorigenic and tumorigenic HeLa hybrid cells. EMBO J 1992; 11: 2283–2291.PubMedGoogle Scholar
  101. 101.
    Durst M, Glitz D, Schneider A et al. Human papillomavirus type 16 (HPV 16) gene expression and DNA replication in cervical neoplasia: analysis by in situ hybridization. Virology 1992; 189: 132–140.PubMedCrossRefGoogle Scholar
  102. 102.
    Smits PHM, Smits HL, Minnaar R et al. The trans-activation of the HPV 16 long control region in human cells with a deletion in the short arm of chromosome 11 is mediated by the 55kDa regulatory subunit of protein phosphatase 2A. EMBO J 1992; 11: 4601–4606.PubMedGoogle Scholar
  103. 103.
    York IA, Roop C, Andrews DW et al. A cytosolic Herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell 1994; 77: 525–535.PubMedCrossRefGoogle Scholar
  104. 104.
    Ge R, Liu X, Ricciardi RP. E1A oncogene of adenovirus-12 mediates trans-repression of MHC class I transcription in Ad5/Ad12 somatic hybrid transformed cells. Virology 1994; 203: 389–392.PubMedCrossRefGoogle Scholar
  105. 105.
    Dyson N, Howley PM, Munger K et al. The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 1989; 243: 934–937.PubMedCrossRefGoogle Scholar
  106. 106.
    Chellappan S, Kraus V, Kroger B et al. Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc Nat Acad Sci USA 1992; 89: 4549–4553.PubMedCrossRefGoogle Scholar
  107. 107.
    Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 1990; 248: 76–79.PubMedCrossRefGoogle Scholar
  108. 108.
    Lane DP, Crawford LV. T antigen is bound to a host protein in SV 40-transformed cells. Nature 1979; 278: 261–263.PubMedCrossRefGoogle Scholar
  109. 109.
    Linzer DIH, Levine AJ. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 1979; 17: 43–52.PubMedCrossRefGoogle Scholar
  110. 110.
    DeCaprio JA, Ludlow JW, Figge J et al. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 1988; 54: 275–283.CrossRefGoogle Scholar
  111. 111.
    Scheffner M, Werness BA, Huibregtse JM et al. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990; 63: 1129–1136.PubMedCrossRefGoogle Scholar
  112. 112.
    White AE, Livanos EM, Tlsty TD. Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes and Development 1994; 8: 666–677.PubMedCrossRefGoogle Scholar
  113. 113.
    zur Hausen H. Viruses in human cancer. Science 1991; 254: 1167–1173.PubMedCrossRefGoogle Scholar
  114. 114.
    Hurlin PJ, Kaur P, Smith P et al. Progression of human papillomavirus type 18 immortalized human keratinocytes to a malignant phenotype. Proc Natl Acad Sci USA 1981; 88: 570–574.CrossRefGoogle Scholar
  115. 115.
    Pecoraro G, Lee M, Morgan D et al. Evolution of in vitro transformation and tumorigenesis of HPV 16 and HPV 18 immortalized primary cervical epithelial cells. Am J Pathol 1991; 138: 1–8.PubMedGoogle Scholar
  116. 116.
    Pagano M, Durst M, Joswig S et al. Binding of the human E2F transcription factor to the retinoblastoma protein but not to cyclin A is abolished in HPV-16-immortalized cells. Oncogene 1992; 7: 1681–1686.PubMedGoogle Scholar
  117. 117.
    Zerfass K, Schulze A, Spitkovsky D et al. S phase induction by the human papillomavirus 16 E7 oncogene reveals an activation cascade of cyclin E and cyclin A transcription. J Virol 1995; 69: 6389–6399.Google Scholar
  118. 118.
    Kirnbauer R, Booy F, Cheng N et al. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci USA 1992; 89: 12180–12184.PubMedCrossRefGoogle Scholar
  119. 119.
    Kirnbauer R, Hubbert NL, Wheeler CM et al. A virus-like particle enzyme-linked immunosorbent assay detecs serum antibodies in a majority of women infected with human papillomavirus type 16. J Nat Cancer Inst 1994; 86: 494–9.PubMedCrossRefGoogle Scholar
  120. 120.
    IARC Monograph on Evaluation of Carcinogenic Risks of Humans. Vol. 59. Hepatitis Viruses, IARC Lyon, 1994.Google Scholar
  121. 121.
    IARC Monograph on Evaluation of Carcinogenic Risks of Humans. Vol. 61. Schistosomes, Liver Flukes and Helicobacter pylori. IARC Lyon, 1994.Google Scholar
  122. 122.
    Munoz N, Bosch FX, de Sanjose S et al. The causal link between human papillomavirus and invasive cervical cancer: a population-based case-control study in columbia and Spain. Int J Cancer 1992; 52: 743–749.PubMedCrossRefGoogle Scholar
  123. 123.
    Schiffman MH, Bauer HM, Hoover RN et al. Epidemiological evidence showing that human papillomavirus infection causes most cervical intraepithelial neoplasia. J Natl Cancer Inst 1993; 85: 958–964.PubMedCrossRefGoogle Scholar
  124. 124.
    Bosch FX, Manos MM, Munoz N et al. Int Biol Study Cervical Cancer (IBSSC) Study Group. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. J Natl Cancer Inst 1995; 87: 796–802.Google Scholar
  125. 125.
    Matsukura T, Sugase M. Identification of genital human papillomaviruses in cervical biopsy specimen: segregation of specific virus types in specific clinicopathologic lesions. Int J Cancer 1995; 61: 13–22.PubMedCrossRefGoogle Scholar
  126. 126.
    Syrjänen K. Histological changes identical to those of condylomatous lesions found in esophageal squamous cell carcinomas. Arch Geschwulstforsch 1982; 52: 283–292.PubMedGoogle Scholar
  127. 127.
    de Villiers EM, Weidauer H, Otto H et al. Papillomavirus DNA in human tongue carcinomas. Int J Cancer 1985; 36: 575–578.PubMedCrossRefGoogle Scholar
  128. 128.
    Löning T, Ikenberg H, Becker J et al. Analysis of oral papillomas, leukoplakias and invasive carcinomas for human papiloomavirus type related DNA. J Invest Dermatol 1985; 84: 417–420.PubMedCrossRefGoogle Scholar
  129. 129.
    Stremlau A, Gissmann L, Ikenberg H et al. Human papilloma virus type 16 related DNA in an anaplastic carcinoma of the lung. Cancer 1995; 55: 1737–1740.CrossRefGoogle Scholar
  130. 130.
    Kahn T, Schwarz E, zur Hausen H. Molecular cloning and characterization of the DNA of a new human papillomavirus (HPV 30) from a laryngeal carcinoma. Int J Cancer 1986; 37: 61–65.PubMedCrossRefGoogle Scholar
  131. 131.
    Scheurlen W, Stremlau A, Gissmann L. Rearranged HPV 16 molecules in an anal and in a laryngeal carcinoma. Int J Cancer 1986; 38: 671–676.PubMedCrossRefGoogle Scholar
  132. 132.
    Shamanin V, zur Hausen H, Lavergne D et al. HPV infections in nonmelanoma skin cancers from renal transplant recipients and nonimmunosuppressed patients. J Nat Cancer Inst 1996; 88: 802–811.PubMedCrossRefGoogle Scholar
  133. 133.
    De Villiers E M. 1989. Heterogeneity of human papillomavirus group. J Virol 63: 4898–4903.PubMedGoogle Scholar
  134. 134.
    De Villiers EM. Papillomavirus and HPV typing. Clinics in Dermatology 1997; (in press).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Harald zur Hausen

There are no affiliations available

Personalised recommendations