NIRS Mediated CBF Assessment: Validating the Indocyanine Green Bolus Transit Detection by Comparison with Coloured Microsphere Flowmetry

  • Geofrey De Visscher
  • Veerle Leunens
  • Marcel Borgers
  • Robert S. Reneman
  • Willem Flameng
  • Koen van Rossem
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 540)


The aim of this study was to validate the blood flow index (BFI), derived from the transit of an indocyanine green bolus through the brain as monitored with near infra-red spectroscopy, for the measurement of cerebral blood flow (CBF) in rats..The validation was performed by comparing the weight corrected BFI (BFIw) to paired flow measurements obtained be coloured microsphere flowmetry under normal and altered CBF. We conclude that the BFIw is an accurate predictor of global CBF as measured with coloured microspheres.


Cerebral Blood Flow Closed Head Injury Bolus Transit Global Cerebral Blood Flow Blood Flow Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. K.van Rossem, S.Garcia-Martinez, G.De Mulder, B.Van Deuren, K.Engelborghs, J.Van Reempts, and M.Borgers, Brain oxygenation after experimental closed head injury. A NIRS study, Adv.Exp.Med.Biol. 471: 09 (1999).CrossRefGoogle Scholar
  2. 2.
    K.van Rossem, S.Garcia-Martinez, L.Wouters, G.De Mulder, B.Van Deuren, J.Van Reempts, and M.Borgers, Cytochrome oxidase redox state in brain is more sensitive to hypoxia after closed head injury: a near-infrared spectroscopy (NIRS) study, J.Cereb.Blood Flow Metab 19: S391 (1999).Google Scholar
  3. 3.
    G.De Visscher, R.Springett, D.T.Delpy, J.Van Reempts, M.Borgers, and K.van Rossem, Nitric oxide does not inhibit cerebral cytochrome oxidase in vivo or in the reactive hyperemic phase after brief anoxia in the adult rat, J.Cereb.Blood Flow Metab 22: 515 (2002).PubMedCrossRefGoogle Scholar
  4. 4.
    G.De Visscher, K.van Rossem, J.Van Reempts, M.Borgers, W.Flameng, and R.S.Reneman, Cerebral blood flow assessment with indocyanine green bolus transit detection by near-infrared spectroscopy in the rat, Comp Biochem.Physiol A Mol.Integr.Physiol 132: 87 (2002).PubMedCrossRefGoogle Scholar
  5. 5.
    M.Haller, C.Akbulut, H.Brechtelsbauer, W.Fett, J.Briegel, U.Finsterer, and K.Peter, Determination of plasma volume with indocyanine green in man, Life Sci. 53: 1597 (1993).PubMedCrossRefGoogle Scholar
  6. 6.
    I.Roberts, P.Fallon, F.J.Kirkham, A.Lloyd-Thomas, C.Cooper, R.Maynard, M.Elliot, and A.D.Edwards, Estimation of cerebral blood flow with near infrared spectroscopy and indocyanine green, Lancet 342: 1425 (1993).PubMedCrossRefGoogle Scholar
  7. 7.
    E.Ruokonen, J.Takala, A.Kari, H.Saxen, J.Mertsola, and E.J.Hansen, Regional blood flow and oxygen transport in septic shock, Crit Care Med. 21: 1296 (1993).PubMedCrossRefGoogle Scholar
  8. 8.
    J.Burggraaf, R.C.Schoemaker, J.M.Kroon, and A.F.Cohen, The influence of nifedipine and captopril on liver blood flow in healthy subjects, Br.J.Clin.Pharmacol. 45: 447 (1998).PubMedCrossRefGoogle Scholar
  9. 9.
    I.G.Roberts, P.Fallon, F.J.Kirkham, P.M.Kirshbom, C.E.Cooper, M.J.Elliott, and A.D.Edwards, Measurement of cerebral blood flow during cardiopulmonary bypass with near-infrared spectroscopy, J.Thorac.Cardiovasc.Surg. 115: 94 (1998).PubMedCrossRefGoogle Scholar
  10. 10.
    A.Eke, P.Herman, I.Balla, and C.Ikrenyi. NIRS assessment of regional red blood cell and plasma transit by a single bolus of indocyanine green in the brain cortex. ISOTT 1997 abstractbook. 1997.Google Scholar
  11. 11.
    W.M.Kuebler, A.Sckell, O.Habler, M.Kleen, G.E.Kuhnle, M.Welte, K.Messmer, and A.E.Goetz, Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green, J.Cereb.Blood Flow Metab 18: 445 (1998).PubMedCrossRefGoogle Scholar
  12. 12.
    A.Y.Estevez and J.W.Phillis, Hypercapnia-induced increases in cerebral blood flow: roles of adenosine, nitric oxide and cortical arousal, Brain Res. 758: 1 (1997).PubMedCrossRefGoogle Scholar
  13. 13.
    I.M.Macrae, D.A.Dawson, J.D.Norrie, and J.McCulloch, Inhibition of nitric oxide synthesis: effects on cerebral blood flow and glucose utilisation in the rat, J.Cereb.Blood Flow Metab 13: 985 (1993).PubMedCrossRefGoogle Scholar
  14. 14.
    P.Kowallik, R.Schulz, B.D.Guth, A.Schade, W.Paffhausen, R.Gross, and G.Heusch, Measurement of regional myocardial blood flow with multiple colored microspheres, Circulation 83: 974 (1991).PubMedCrossRefGoogle Scholar
  15. 15.
    P.Herijgers, V.Leunens, T.B.Tjandra-Maga, K.Mubagwa, and W.Flameng, Changes in organ perfusion after brain death in the rat and its relation to circulating catecholamines, Transplantation 62: 330 (1996).PubMedCrossRefGoogle Scholar
  16. 16.
    M.Nakai, K.Tamaki, J.Yamamoto, A.Shimouchi, and M.Maeda, A minimally invasive technique for multiple measurement of regional blood flow of the rat brain using radiolabeled microspheres, Brain Res. 507: 168 (1990).PubMedCrossRefGoogle Scholar
  17. 17.
    G.De Visscher, M.Haseldonckx, W.Flameng, M.Borgers, R.S.Reneman, and K.van Rossem, Development of a novel fluorescent microsphere technique to combine serial cerebral blood flow measurements with histology in the rat, J.Neurosci.Methods 122: 149 (2003).Google Scholar
  18. 18.
    R.Springett, J.Newman, M.Cope, and D.T.Delpy, Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain, Am.J.Physiol Heart Circ.Physiol 279: H2202 (2000).PubMedGoogle Scholar
  19. 19.
    M.Cope, D.T.Delpy, S.Wray, J.S.Wyatt, and E.O.Reynolds, A CCD spectrophotometer to quantitate the concentration of chromophores in living tissue utilising the absorption peak of water at 975 nm, Adv.Exp.Med.Biol. 248: 33 (1989).PubMedCrossRefGoogle Scholar
  20. 20.
    S.J.Matcher, C.E.Elwell, C.E.Cooper, M.Cope, and D.T.Delpy, Performance comparison of several published tissue near-infrared spectroscopy algorithms, Anal.Biochem. 227: 54 (1995).PubMedCrossRefGoogle Scholar
  21. 21.
    S.J.Matcher and C.E.Cooper, Absolute quantification of deoxyhaemoglobin concentration in tissue near infrared spectroscopy., Phys.Med.Biol. 39: 1295 (1994).PubMedCrossRefGoogle Scholar
  22. 22.
    M.L.Landsman, G.Kwant, G.A.Mook, and W.G.Zijlstra, Light-absorbing properties, stability, and spectral stabilization of indocyanine green, J.Appl.Physiol 40: 575 (1976).PubMedGoogle Scholar
  23. 23.
    W.Wieland, P.F.Wouters, H.Van Aken, and W.Flameng, Measurement of organ blood flow with colored microspheres: a first time-saving improvement using automated spectrophotometry., in: “Computers in cardiology 1993”, IEEE Computers Society Press, Los Alamos (1993).Google Scholar
  24. J.M.Bland and D.G.Altman, Statistical methods for assessing agreement between two methods of clinical measurement, Lancet 1: 307 (1986).PubMedCrossRefGoogle Scholar
  25. 25.
    G.D.Buckberg, J.C.Luck, D.B.Payne, J.I.Hoffman, J.P.Archie, and D.E.Fixler, Some sources of error in measuring regional blood flow with radioactive microspheres, J.Appl.Physiol 31: 598 (1971).PubMedGoogle Scholar
  26. 26.
    J.G.Lee, J.J.Smith, A.G.Hudetz, C.J.Hillard, Z.J.Bosnjak, and J.P.Kampine, Laser-Doppler measurement of the effects of halothane and isoflurane on the cerebrovascular CO2 response in the rat, Anesth.Analg. 80: 696 (1995).PubMedGoogle Scholar
  27. 27.
    R.von Kummer, Local vascular response to change in carbon dioxide tension. Long term observation in the cat’s brain by means of the hydrogen clearance technique, Stroke 15: 108 (1984).CrossRefGoogle Scholar
  28. 28.
    G.De Ley, J.B.Nshimyumuremyi, and I.Leusen, Hemispheric blood flow in the rat after unilateral common carotid occlusion: evolution with time, Stroke 16: 69 (1985).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Geofrey De Visscher
    • 1
    • 2
  • Veerle Leunens
    • 2
  • Marcel Borgers
    • 1
  • Robert S. Reneman
    • 1
  • Willem Flameng
    • 2
  • Koen van Rossem
    • 3
  1. 1.Department of Molecular Cell Biology, CARIMUniversity of MaastrichtThe Netherlands
  2. 2.CEHACatholic University of LeuvenLeuvenBelgium
  3. 3.Center of Excellence for Cardiovascular Safety ResearchJohnson & Johnson Pharmaceutical Research & DevelopmentBeerseBelgium

Personalised recommendations