Optical Measurements of Tissue Oxygen Saturation in Lower Limb Wound Healing

  • David K. Harrison
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 540)


It is has been estimated that hospital acquired (nosocomial) infections cost the National Health Service (NHS), in England alone, £931 million per annum.1 Of this, the cost of lower limb wound infections (which account for about 21% of all surgical wound infections) can be calculated at £13.7 million per annum. Thus, the development of techniques that can quantify the risk of infection and thus allow early preventative treatment is desirable on both clinical and economic grounds.


National Health Service Critical Limb Ischaemia Surgical Wound Infection Lower Extremity Wound Tissue Oxygen Saturation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Plowman, N. Graves, M. Griffin, J. A. Roberts, A. V. Swan, B. D. Cookson and L. Taylor, The socioeconomic burden of hospital acquired infection ( Public Health Laboratory Service, London, 2000 ).Google Scholar
  2. 2.
    T. K. Hunt and M. P. Pai, The effect of varying ambient oxygen tensions on wound metabolism and collagen synthesis. Surg. Gynec. Obst. 135, 61–567 (1972).Google Scholar
  3. 3.
    I. A. Silver, The measurement of oxygen tension in healing tissue, Progr. Resp. Res. 3, 124–135 (1969).Google Scholar
  4. 4.
    T. G. Parslow and D. F. Bainton: Medical Immunology, edited by D. P. Sites, A. I. Terr and T. G. Parslow Prentice Hall, New Jersey, 1997 ) pp. 25–42.Google Scholar
  5. 5.
    F. O. Stephens and T. K. Hunt, Effect of changes in inspired oxygen and carbon dioxide tensions on wound tensile strength: an experimental study, Ann. Surg. 173, 515–519 (1971).PubMedCrossRefGoogle Scholar
  6. 6.
    D. C. Hohn, Leukocyte phagocytic function and dysfunction, Surg. Gynaecol. Obstet. 123, 247–52 (1977).Google Scholar
  7. 7.
    D. B. Allen, J. J. Maguire, M. Mandavian, C. Wicke, L. Marcocci, H. Scheuenstuhl, M. Chang, A. X. Le, H. W. Hopf and T. K. Hunt. Wound hypoxia and acidosis limit neutrophil bacterial killing mechanisms. Arch. Surg. 132, 991–996 (1997).PubMedCrossRefGoogle Scholar
  8. 8.
    H. W. Hopf, T. K. Hunt TK, J. M. West, P. Blomquist, W. H. Goodson III, J. A. Jensen, K. Jonsson, P. B. Paty, J. M. Rabkin, R. A. Upton, K. vom Smitten and J. D. Whitnet, Wound tissue oxygen tension predicts the risk of wound infection in surgical patients, Arch. Surg. 132, 997–1004 (1997).PubMedCrossRefGoogle Scholar
  9. 9.
    R. W. Haley, D. H. Culver, W. M. Morgan, J. W. White, T. G. Emori and T. M. Hooton, Identifying patients at risk high of surgical wound infection: a simple multivariate index of patient susceptibilty and wound contamination. Am. J. Epidemiol. 121, 206–215 (1985).PubMedGoogle Scholar
  10. 10.
    D. K. Harrison, Optical measurement of tissue oxygen saturation, Int. J. Lower Extremity Wounds 1, 191201 (2002).Google Scholar
  11. 11.
    Z. Raza, D. J. Newton, D. K. Harrison, P. T. McCollum and P. A. Stonebridge, Disruption of skin perfusion following longitudinal groin incision for infrainguinal bypass surgery, Eur. J. Vasc. Endovasc. Surg. 17, 5–8 (1999).PubMedCrossRefGoogle Scholar
  12. 12.
    K. H. Frank, M. Kessler, K. Appelbaum and W. Dümmler, The Erlangen micro-lightguide spectrophotometer EMPHO I, Phys. Med. Biol. 34, 1883–1900 (1989).PubMedCrossRefGoogle Scholar
  13. 13.
    D. J. Newton, D. K. Harrison, G. B. Hanna, C. J. A. Thomson, J. J. F. Belch and P. T. McCollum, Microvascular bood flow and oxygen supply in ulcerated skin of the lower limb, Adv. Exp. Med. Biol. 428, 21–26 (1997).PubMedCrossRefGoogle Scholar
  14. 14.
    D. J. Newton, Lightguide spectrophotometry assessment of oxygen transport in cutaneous inflammation and wound healing, Ph.D. Thesis, ( University of Dundee, Dundee, 1999 ).Google Scholar
  15. 15.
    D. K. Harrison, S. D. Evans, N. C. Abbot, J. S. Beck and P. T. McCollum, Spectrophotometric measurements of haemoglobin saturation and concentration in skin during the tuberculin reaction in normal human subjects, Clin. Phys. Physiol. Meas. 13, 349–363 (1992).PubMedCrossRefGoogle Scholar
  16. 16.
    D. Newton, G. Leese, D. Harrison, and J. Belch, Microvascular abnormalities in diabetic foot ulcers. The Diabetic Foot 4, 141–146 (2001).Google Scholar
  17. 17.
    S. M. Rajbhandari, N. D. Harris, S. Tesfaye and J. D. Ward, Early identification of diabetic foot ulcers that may require intervention using the micro lightguide spectrophotometer, Diabetes Care 22, 1292–1295 (1999).PubMedCrossRefGoogle Scholar
  18. 18.
    D. K. Harrison, P. T. McCollum, D. J. Newton, P. Hickman and A. S. Jain, Amputation level assessment using lightguide spectrophotometry, Prosthet. Orthot. Int. 19, 139–147 (1995).PubMedGoogle Scholar
  19. 19.
    J. M. Hanson, D. K. Harrison and I. E. Hawthorn, Tissue spectrophotometry and thermographic imaging applied to routine clinical prediction of amputation level viability, in: Functional Monitoring of Drug-Tissue Interaction, edited by M. D. Kessler and G. J. Müller, Proc SPIE 4623, 187–194 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • David K. Harrison
    • 1
  1. 1.Regional Medical Physics Department, Durham UnitUniversity Hospital of North DurhamDurhamUK

Personalised recommendations